TECHNIKA SYGNAŁÓW ANALOGOWYCH

Andrzej Leśnicki

Gdańsk 2001
<table>
<thead>
<tr>
<th>Spis treści</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Przedmowa</td>
<td></td>
</tr>
<tr>
<td>Wykaz oznaczeń</td>
<td></td>
</tr>
<tr>
<td>1. Sygnały, elementy, układy i systemy</td>
<td></td>
</tr>
<tr>
<td>1.1. Wprowadzenie</td>
<td>5 str</td>
</tr>
<tr>
<td>1.2. Sygnały analogowe, dyskretyczne, cyfrowe</td>
<td>2 str</td>
</tr>
<tr>
<td>1.3. Układy przyczynowe i nieprzyczynowe</td>
<td>1 str</td>
</tr>
<tr>
<td>1.4. Układy o parametrach skupionych i rozłożonych</td>
<td>2 str</td>
</tr>
<tr>
<td>1.5. Układy liniowe i nieliniowe</td>
<td>2 str</td>
</tr>
<tr>
<td>1.6. Układy stałe w czasie i zmienne w czasie</td>
<td>2 str</td>
</tr>
<tr>
<td>1.7. Układy stabilne i niestabilne</td>
<td>1 str</td>
</tr>
<tr>
<td>1.8. Przepływ prądu przez rezystor</td>
<td>6 str</td>
</tr>
<tr>
<td>1.9. Indukcja elektryczna w kondensatorze</td>
<td>5 str</td>
</tr>
<tr>
<td>1.10. Indukcja magnetyczna w induktorze</td>
<td>6 str</td>
</tr>
<tr>
<td>1.11. Prawo rozpływu prądów</td>
<td>2 str</td>
</tr>
<tr>
<td>1.12. Prawo rozkładu napięć</td>
<td>2 str</td>
</tr>
<tr>
<td>1.13. Topologiczne właściwości układu</td>
<td>8 str</td>
</tr>
<tr>
<td>1.14. Prawo zachowania mocy i twierdzenie Tellegena</td>
<td>2 str</td>
</tr>
<tr>
<td>1.15. Obliczanie czułości metodą układu dołączonego</td>
<td>5 str</td>
</tr>
<tr>
<td>1.16. Dwójniki</td>
<td></td>
</tr>
<tr>
<td>1.16.1. Definicja dwójnika</td>
<td>1 str</td>
</tr>
<tr>
<td>1.16.2. Rezystor</td>
<td>4 str</td>
</tr>
<tr>
<td>1.16.3. Kondensator</td>
<td>4 str</td>
</tr>
<tr>
<td>1.16.4. Induktor</td>
<td>5 str</td>
</tr>
<tr>
<td>1.16.5. Memrystort</td>
<td>2 str</td>
</tr>
<tr>
<td>1.17. Wielowrotniki</td>
<td></td>
</tr>
<tr>
<td>1.17.1. Klasifikacja wielowrotników</td>
<td>5 str</td>
</tr>
<tr>
<td>1.17.2. Źródła sterowane</td>
<td>3 str</td>
</tr>
<tr>
<td>1.17.3. Żyrator</td>
<td>2 str</td>
</tr>
<tr>
<td>1.17.4. Konwerter ujemno-impedancyjny</td>
<td>2 str</td>
</tr>
<tr>
<td>1.17.5. Wzmacniacz operacyjny idealny</td>
<td>2 str</td>
</tr>
<tr>
<td>1.17.6. Wzmacniacz operacyjny rzeczywisty</td>
<td>5 str</td>
</tr>
<tr>
<td>1.17.7. Transformator idealny</td>
<td>2 str</td>
</tr>
<tr>
<td>1.17.8. Transformator rzeczywisty</td>
<td>7 str</td>
</tr>
<tr>
<td>1.18. Podstawowe sygnały</td>
<td></td>
</tr>
<tr>
<td>1.18.1. Klasifikacja sygnałów i ich parametry</td>
<td>7 str</td>
</tr>
<tr>
<td>1.18.2. Sygnały okresowe i prawie okresowe</td>
<td>4 str</td>
</tr>
<tr>
<td>1.18.3. Sygnał stały</td>
<td>1 str</td>
</tr>
<tr>
<td>1.18.4. Sygnał sinusoidalny</td>
<td>3 str</td>
</tr>
<tr>
<td>1.18.5. Skok jednostkowy</td>
<td>1 str</td>
</tr>
<tr>
<td>1.18.6. Impuls jednostkowy</td>
<td>4 str</td>
</tr>
<tr>
<td>1.18.7. Sygnał AM</td>
<td>2 str</td>
</tr>
<tr>
<td>1.18.8. Sygnał FM</td>
<td>4 str</td>
</tr>
<tr>
<td>1.19. Zadania</td>
<td>18 str</td>
</tr>
<tr>
<td>2. Liniowe układy rezystancyjne</td>
<td></td>
</tr>
<tr>
<td>2.1. Rezystancje zastępcze</td>
<td>5 str</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Strona</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Dzielnik napięciowy i prądowy</td>
</tr>
<tr>
<td>2.3</td>
<td>Rzeczywiste źródła napięciowe i prądowe</td>
</tr>
<tr>
<td>2.4</td>
<td>Dopasowanie energetyczne</td>
</tr>
<tr>
<td>2.5</td>
<td>Dopasowanie falowe</td>
</tr>
<tr>
<td>2.6</td>
<td>Zasada wzajemności</td>
</tr>
<tr>
<td>2.7</td>
<td>Zasada kompensacji</td>
</tr>
<tr>
<td>2.8</td>
<td>Metoda superpozycji</td>
</tr>
<tr>
<td>2.9</td>
<td>Metoda przesuwania źródeł napięciowych</td>
</tr>
<tr>
<td>2.10</td>
<td>Metoda przesuwania źródeł prądowych</td>
</tr>
<tr>
<td>2.11</td>
<td>Metoda źródeł zastępczych Thévenina i Norton'a</td>
</tr>
<tr>
<td>2.12</td>
<td>Metoda prądów oczekowych</td>
</tr>
<tr>
<td>2.13</td>
<td>Nieoznaczona macierz rezystancyjna wielobiegunnika</td>
</tr>
<tr>
<td>2.14</td>
<td>Metoda napięć węzłowych</td>
</tr>
<tr>
<td>2.15</td>
<td>Nieoznaczona macierz konduktancyjna wielobiegunnika</td>
</tr>
<tr>
<td>2.16</td>
<td>Uogólniona metoda napięć węzłowych dla układów z idealnymi wzmacniaczami operacyjnymi</td>
</tr>
<tr>
<td>2.17</td>
<td>Algebraiczny sumator napięć</td>
</tr>
<tr>
<td>2.18</td>
<td>Drabinka R-2R</td>
</tr>
<tr>
<td>2.19</td>
<td>Układy mostkowe</td>
</tr>
<tr>
<td>2.20</td>
<td>Układy symetryczne</td>
</tr>
<tr>
<td>2.21</td>
<td>Układy polaryzacji tranzystorów bipolarnych</td>
</tr>
<tr>
<td>2.22</td>
<td>Źródła prądowe</td>
</tr>
<tr>
<td>2.23</td>
<td>Średnie konfiguracje z tranzystorem bipolarnym</td>
</tr>
<tr>
<td>2.24</td>
<td>Wzmacniacz różnicowy z tranzystorami bipolarnymi</td>
</tr>
<tr>
<td>2.25</td>
<td>Zmodyfikowana metoda napięć węzłowych</td>
</tr>
<tr>
<td>2.26</td>
<td>Metoda macierzy rzadkich</td>
</tr>
<tr>
<td>2.27</td>
<td>Zadania</td>
</tr>
</tbody>
</table>

3. Nieliniowe układy rezystancyjne

<table>
<thead>
<tr>
<th>Strona</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Nieliniowe rezystancyjne przyrządy półprzewodnikowe</td>
</tr>
<tr>
<td>3.2</td>
<td>Graficzne metody analizy</td>
</tr>
<tr>
<td>3.3</td>
<td>Iteracyjne rozwiązywanie równań nieliniowych</td>
</tr>
<tr>
<td>3.4</td>
<td>Para różnicowa z tranzystorami bipolarnymi</td>
</tr>
<tr>
<td>3.5</td>
<td>Układy mnożników</td>
</tr>
<tr>
<td>3.6</td>
<td>Para różnicowa z tranzystorami polowymi</td>
</tr>
<tr>
<td>3.7</td>
<td>Układy prostownicze</td>
</tr>
<tr>
<td>3.8</td>
<td>Stabilizatory napięcia</td>
</tr>
<tr>
<td>3.9</td>
<td>Zadania</td>
</tr>
</tbody>
</table>

4. Liniowe układy z sygnałami sinusoidalnymi

<table>
<thead>
<tr>
<th>Strona</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Rozwiązanie równań układu i transmitancja układu</td>
</tr>
<tr>
<td>4.2</td>
<td>Schemat zastępczy układu</td>
</tr>
<tr>
<td>4.3</td>
<td>Msce w układach z sygnałami sinusoidalnymi</td>
</tr>
<tr>
<td>4.4</td>
<td>Dopasowanie energetyczne</td>
</tr>
<tr>
<td>4.5</td>
<td>Dopasowanie falowe</td>
</tr>
<tr>
<td>4.6</td>
<td>Rezonans w dwójnikach</td>
</tr>
<tr>
<td>4.7</td>
<td>Szeregowy obwód rezonansowy</td>
</tr>
<tr>
<td>4.8</td>
<td>Równoległy obwód rezonansowy</td>
</tr>
<tr>
<td>4.9</td>
<td>Obwód rezonansowy z dzieloną pojemnością</td>
</tr>
<tr>
<td>4.10</td>
<td>Para obwodów sprzężonych</td>
</tr>
<tr>
<td>4.11. Układy dualne</td>
<td>4 str</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>4.12. Charakterystyki i asymptoty Bodego</td>
<td>8 str</td>
</tr>
<tr>
<td>4.13. Charakterystyki częstotliwościowe wzmacniaczy szerokopasmowych RC</td>
<td>8 str</td>
</tr>
<tr>
<td>4.14. Sieć energetyczna</td>
<td>4 str</td>
</tr>
<tr>
<td>4.15. Zadania</td>
<td>19 str</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Liniowe układy z sygnałami przyczynowymi</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Wprowadzenie</td>
</tr>
<tr>
<td>5.2. Warunki komutacji</td>
</tr>
<tr>
<td>5.3. Metoda klasyczna analizy</td>
</tr>
<tr>
<td>5.3.1. Równania różniczkowe układu</td>
</tr>
<tr>
<td>5.3.2. Metoda uzmienniania stałych</td>
</tr>
<tr>
<td>5.3.3. Układy pierwszego rzędu</td>
</tr>
<tr>
<td>5.3.4. Układy drugiego rzędu</td>
</tr>
<tr>
<td>5.4. Stabilność układu</td>
</tr>
<tr>
<td>5.4.1. Pojęcie stabilności w sensie Lapunowa</td>
</tr>
<tr>
<td>5.4.2. Zależność stabilności od pierwiastków równania charakterystycznego</td>
</tr>
<tr>
<td>5.4.3. Algebraiczne kryterium stabilności Routha-Hurwitza</td>
</tr>
<tr>
<td>5.5. Metoda operatorowa analizy</td>
</tr>
<tr>
<td>5.5.1. Jednostronne przekształcenie Laplace’a</td>
</tr>
<tr>
<td>5.5.2. Transformaty Laplace’a sygnałów</td>
</tr>
<tr>
<td>5.5.3. Właściwości przekształcenia Laplace’a</td>
</tr>
<tr>
<td>5.5.4. Operatorowa metoda rozwiązywania równań różniczkowych</td>
</tr>
<tr>
<td>5.5.5. Rozkład funkcji wymiernej na ułamki proste</td>
</tr>
<tr>
<td>5.5.6. Operatorowy schemat zastępczy układu</td>
</tr>
<tr>
<td>5.5.7. Dwustronne przekształcenie Laplace’a</td>
</tr>
<tr>
<td>5.6. Charakterystyki czasowe układu</td>
</tr>
<tr>
<td>5.6.1. Odpowiedzi impulsowa i skokowa</td>
</tr>
<tr>
<td>5.6.2. Całka splotowa Borela</td>
</tr>
<tr>
<td>5.6.3. Całka superpozycji Duhamela</td>
</tr>
<tr>
<td>5.7. Zadania</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Metoda zmiennych stanu</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Równania stanu i wyjścia</td>
</tr>
<tr>
<td>6.2. Rozwiązanie równania stanu w dziedzinie czasu</td>
</tr>
<tr>
<td>6.3. Rozwiązanie równania stanu metodą przekształcenia Laplace’a</td>
</tr>
<tr>
<td>6.4. Przekształcenie równania różniczkowego n-tego rzędu do równania stanu</td>
</tr>
<tr>
<td>6.5. Wyznaczenie rozwiązania okresowego stanu ustalonego</td>
</tr>
<tr>
<td>6.6. Metoda płaszczyzny fazowej</td>
</tr>
<tr>
<td>6.7. Zadania</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Szeregi Fouriera</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Uogólniony szereg Fouriera</td>
</tr>
<tr>
<td>7.2. Trygonometryczny szereg Fouriera</td>
</tr>
<tr>
<td>7.3. Wykładniczy szereg Fouriera</td>
</tr>
<tr>
<td>7.4. Właściwości szeregu Fouriera</td>
</tr>
<tr>
<td>7.5. Sygnały okresowe w układach liniowych</td>
</tr>
<tr>
<td>7.6. Funkcje Haara i falki</td>
</tr>
<tr>
<td>7.7. Zadania</td>
</tr>
</tbody>
</table>
8. Przekształcenie Fouriera

8.1. Związki przekształcenia Fouriera z szeregiem Fouriera... 2 str
8.2. Proste i odwrotne przekształcenie Fouriera... 4 str
8.3. Właściwości przekształcenia Fouriera.. 12 str
8.4. Wpływ układu na widmo sygnału.. 6 str
8.5. Warunek quasi-stacjonarności FM.. 3 str
8.6. Zależność charakterystyk częstotliwościowych od rozkładu zer i biegunów.................... 9 str
8.7. Szumy w układach

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7.1. Widma szumów</td>
<td>4 str</td>
</tr>
<tr>
<td>8.7.2. Współczynnik szumów</td>
<td>8 str</td>
</tr>
<tr>
<td>8.7.3. Filtr dopasowany</td>
<td>4 str</td>
</tr>
<tr>
<td>8.8. Widma okien czasowych</td>
<td>6 str</td>
</tr>
<tr>
<td>8.9. Krótkoczasowe przekształcenie Fouriera STFT.</td>
<td>2 str</td>
</tr>
<tr>
<td>8.10. Zadania</td>
<td>11 str</td>
</tr>
</tbody>
</table>

9. Przekształcenie Hilberta

9.1. Definicja i właściwości przekształcenia Hilberta... 7 str
9.2. Sygnał analityczny................................. 8 str
9.3. Obwiednia zespolona sygnału pasmowego... 6 str
9.4. Sygnał SSB-SC.. 2 str
9.5. Współzależność między charakterystykami częstotliwościowymi.................................. 4 str
9.6. Zadania... 4 str

10. Układy czwórnikowe

10.1. Macierze charakterystyczne czwórnika.. 9 str
10.2. Klasifikacja czwórników... 3 str
10.3. Połączenia czwórników... 8 str
10.4. Metoda algebraiczna przekształcenia układu w czwórnik.. 3 str
10.5. Parametry robocze układu czwórnikowego.. 7 str
10.6. Parametry falowe czwórnika... 7 str
10.7. Macierz rozproszenia czwórnika... 9 str
10.8. Filtry LC
10.8.1. Filtr Butterwortha... 6 str
10.8.2. Filtr Czebyszewa... 6 str
10.8.3. Filtr Bessela... 7 str
10.8.4. Transformacje częstotliwościowe filtra... 4 str
10.9. Zadania... 16 str

11. Układy ze sprzężeniem zwrotnym

11.1. Pętla sprzężenia zwrotnego.. 3 str
11.2. Częstotliwościowe kryterium stabilności... 4 str
11.3. Czwórnikowe sprzężenie zwrotnie.. 15 str
11.4. Generatory drgań sinusoidalnych.. 6 str
11.5. Komputerowa metoda analizy układów ze sprzężeniem zwrotnym......................... 7 str
11.6. Zadania... 9 str

12. Linie transmisyjne

12.1. Parametry linii transmisyjnej.. 5 str
12.2. Konstrukcje linii transmisyjnych... 4 str
12.3. Odcinek linii transmisyjnej jako czwórnik...7 str
12.4. Metoda fal wędrujących..6 str
12.5. Metoda graficzna Bergerona..3 str
12.6. Wykres Smitha..4 str
12.7. Zadania..7 str

Literatura..3 str

Dodatek A. Jednostki miary, oznaczenia i wartości stałych..6 str
Dodatek B. Znormalizowane wartości elementów...2 str
Dodatek C. Macierze..4 str
Dodatek D. Liczby zespolone i wskazy..4 str
Dodatek E. Chronologia..2 str
Dodatek F. Biografie..12 str
Przedmowa

Książka jest przeznaczona dla studentów kierunków Elektronika i Telekomunikacja, Inżynieria Biomedyczna oraz Automatyka i Robotyka. Ma stanowić pomoc przy prowadzeniu wykładów, ćwiczeń tablicowych, laboratorium głównie z przedmiotu Obwody i Sygnały. Dotyczy sygnałów i układów analogowych.

W książce położono nacisk na połączenie teorii z praktycznymi zastosowaniami. Przydatność teorii jest ilustrowana przykładami analizy i projektowania prostych układów elektronicznych. Książka zawiera bardzo dużą liczbę przykładów i zadań do samodzielnego rozwiązania. Ujednolicono oznaczenia i symbole używane w dziedzinie teorii obwodów i układów elektronicznych. Przyjęto konwencję obowiązującą dla układów elektronicznych (np. oznaczenie napięcia \(v(t) \), stosowne symbole źródeł napięciowych i prądowych), gdyż jest to konwencja, od której nie ma odwrotu z chwilą, gdy upowszechniła się w programach komputerowej symulacji układów elektronicznych i zawartych w nich edytorach schematów układów elektronicznych.

Wiele zagadnień z dziedziny sygnałów i układów analogowych przenosi się na sygnały i układy dyskretnie i cyfrowe (np. splot sygnałów, przekształcenia całkowe sygnałów, zagadnienia filtracji), które są opisane w innej książce pt. Technika Cyfrowego Przetwarzania Sygnałów. Związek między obu książkami podkreśla użycie w tytułach obu książek tego samego wyrazu „technika”. W tej książce wyraz technika oznacza metody, sposoby badania sygnałów i układów analogowych.

Andrzej Leśnicki
Wykaz oznaczeń

\(a(t)\) - amplituda chwilowa sygnału analitycznego
\(A\) - macierz incydencji
\(A(\omega)\) - charakterystyka amplitudowa lub widmo amplitudowe
\(B\) - indukcja magnetyczna
\(B\) - macierz obwodowa
\(B_{3dB}\) - pasmo trzydecybelowe
\(B(\omega)\) - susceptancja
\(B_n(x)\) - wielomian Bessela
cos\(\varphi\) - współczynnik mocy
\(C\) - pojemność kondensatora
\(C_n(x)\) - wielomian Czebyszewa
\(D^F_x\) - czułość bezwzględna
e\(t\) - chwilowa wydajność źródła napięciowego
\(E\) - wydajność źródła napięcia stałego lub natężenie pola elektrycznego
\(E_x\) - energia sygnału \(x(t)\)
f - częstotliwość
f\(t\) - częstotliwość chwilowa
\(F\) - współczynnik szumów
\(F(\omega)\) - operacja wykonywana przez układ na sygnale wejściowym
\(F(\omega)\) - różnica zwrotna
\(\mathcal{F}\{x(t)\}\) - przekształcenie (transformata) Fouriera sygnału \(x(t)\)
g - stała przenoszenia falowego
g\(t\) - odpowiedź skokowa
g\(m\) - konduktancja wzajemna (transkonduktancja)
\(G\) - przewodność (konduktancja) rezystora
\(h(t)\) - odpowiedź impulsowa
\(H\) - natężenie pola magnetycznego
\(\hat{H}(j\omega) = H(j\omega) = H(\omega)\) - transmitancja (częstotliwościowa)
\(H(s)\) - transformat (operatorowa)
\(H_f\) - transmitancja układu z zamkniętą pętlą sprzężenia zwrotnego
\(H_i\) - wzmacnienie prądowe
\(H_p\) - wzmacnienie mocy
\(H_{pd}\) - dysponowane wzmacnienie mocy
\(H_{pe}\) - skuteczne (efektywne) wzmacnienie mocy
\(H_v\) - wzmacnienie napięciowe
\(H_A(\omega)\) - transmitancja filtru Hilberta
\(H_T(\omega)\) - transmitancja transformatora Hilberta
\(\mathcal{H}\{x(t)\}\) - przekształcenie (transformata) Hilberta sygnału \(x(t)\)
i\(t\) - prąd chwilowy
j\(t\) - chwilowa wydajność źródła prądowego
\(J\) - wydajność źródła prądu stałego
k - współczynnik sprzężenia transformatora rzeczywistego lub współczynnik konwersji konwertera ujemno-impedancyjnego

k_{k} - współczynnik kształtu

k_{s} - współczynnik szczytu

$K_{n}(a_{1},...,a_{n})$ - kontynuanta

l - długość

L - indukcyjność induktora

$L\{x(t)\}$ - przekształcenie (transformata) Laplace’a sygnału $x(t)$

LSB - najmniej znaczący bit

MSB - najbardziej znaczący bit

NIC - konwerter ujemno-impedancyjny

p_{i} - bieguny transmitancji

$p(t)$ - moc chwilowa

P - moc czynna

P_{d} - moc dysponowana

$q(t)$ - ładunek elektryczny chwilowy

Q - ładunek elektryczny stały lub moc bierna lub dobroć obwodu rezonansowego

Q_{x}^{F} - czułość półwzględna

r_{m} - rezystancja wzajemna (transrezystancja)

R - rezystancja rezystora

$R_{xx}(\tau)$ - funkcja korelacji własnej (autokorelacja) sygnału $x(t)$

$R_{xy}(\tau)$ - funkcja korelacji wzajemnej (skrośnej) sygnałów $x(t)$ i $y(t)$

$s(t)$ - sygnał analogowy

$\text{sgn}(t)$ - funkcja znak (signum)

\hat{S} - moc zespolona

$|\hat{S}|$ - moc pozorna

S_{r} - szybkość narastania napięcia wyjściowego (ang. slew-rate)

S_{x}^{F} - czułość względna

SLS - element, układ skupiony, liniowy, stały w czasie

t - czas

T - temperatura zera bezwzględnego

T_{e} - równoważna temperatura szumów

T_{o} - okres podstawowy sygnału okresowego

$T(a)$ - stosunek zwrotowy

$u(t)$ - skok jednostkowy (jedynka Heaviside’a)

$v(t)$ - napięcie chwilowe

$w(t)$ - energia chwilowa lub okno czasowe

WFS - współczynnik fali stojącej

\hat{x} - daszek podkreślą, że liczba x jest liczbą zespoloną

$x(t)$ - analogowy sygnał wejściowy (pobudzenie)

$x^{*}(t)$ - gwiazdka oznacza wartość zespoloną sprzężoną
\(x(t) \ast h(t) \) - gwiazdka oznacza całkę splotową dwóch sygnałów
\(\langle x, h \rangle \) - iloczyn skalarny
\(x_p(t) \) - część o symetrii parzystej sygnału \(x(t) \)
\(x_n(t) \) - część o symetrii nieparzystej sygnału \(x(t) \)
\(x_i(t) \) - część urojona sygnału zespółonego \(x(t) \) lub składowa synfazowa
\(x_q(t) \) - składowa kwadraturowa
\(x_0(t) \) - część rzeczywista sygnału zespółonego
\(\tilde{x}(t) = x_i(t) + j x_q(t) \) - obwiednia zespolona sygnału pasmowego
\(X_m \) - amplituda sygnału \(x(t) \)
\(X_{pp} \) - wartość międzyzcztotowa sygnału \(x(t) \)
\(X_{sk} \) - wartość skuteczna sygnału \(x(t) \)
\(X_0 \) - wartość średnia sygnału \(x(t) \)
\(X_{0,po} \) - wartość średnia półokresowa sygnału okresowego antysymetrycznego
\(X(\omega) \) - reaktancja
\(X_i(\omega) \) - część urojona widma \(X(\omega) \)
\(X_q(\omega) \) - część rzeczywista widma \(X(\omega) \)
\(y(t) \) - analogowy sygnał wyjściowy (odpowiedź)
\(Y \) - admittance
\(z_i \) - zera transmitancji
\(z(t) = A \{ x(t) \} \) - sygnał analityczny utworzony z sygnału \(x(t) \)
\(Z \) - impedancja
\(Z_f \) - impedancja falowa
\(Z_0 \) - impedancja charakterystyczna
\(\alpha(\omega) \) - współczynnik tłumienia
\(\beta(\omega) \) - współczynnik fazy lub transmitancja bloku sprzężenia zwrotnego
\(\gamma \) - przewodność właściwa lub współczynnik propagacji
\(\Gamma \) - współczynnik odbicia
\(\delta \) - gęstość prądu elektrycznego
\(\delta(t) \) - impuls jednostkowy (delta Diraca)
\(\varepsilon \) - przenikalność elektryczna lub parametr zafalowania charakterystyki filtru
\(\lambda \) - długość fali
\(\mu \) - przenikalność magnetyczna
\(\sigma_x^2 \) - wariancja sygnału \(x(t) \)
\(\tau(\omega) \) - opóźnienie fazowe
\(\tau_g(\omega) \) - opóźnienie grupowe
\(\phi(t) \) - faza chwilowa
\(\phi(\omega) \) - charakterystyka fazowa lub widmo fazowe
\(\Phi \) - strumień magnetyczny
\(\psi(t) \) - strumień magnetyczny skojarzony chwilowy
\(\omega \) - pulsacja
\(\omega(t) \) - pulsacja chwilowa