
Interfacing C and C++ With Assembly Language www.ti.com

Because you are referencing only the symbol's value as stored in the symbol table, the symbol's declared
type is unimportant. In Example 6-9, int is used. You can reference linker-defined symbols in a similar
manner.

6.5.3 Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code. For more information, see the C/C++ header files chapter in the
TMS320C55x Assembly Language Tools User's Guide.

6.5.4 Using Inline Assembly Language

Within a C/C++ program, you can use the asm statement to insert a single line of assembly language into
the assembly language file created by the compiler. A series of asm statements places sequential lines of
assembly language into the compiler output with no intervening code. For more information, see
Section 5.8.

The asm statement is useful for inserting comments in the compiler output. Simply start the assembly
code string with a semicolon (;) as shown below:
asm(";*** this is an assembly language comment");

NOTE: Using the asm Statement

Keep the following in mind when using the asm statement:
• Be extremely careful not to disrupt the C/C++ environment. The compiler does not check

or analyze the inserted instructions.
• Avoid inserting jumps or labels into C/C++ code because they can produce

unpredictable results by confusing the register-tracking algorithms that the code
generator uses.

• Do not change the value of a C/C++ variable when using an asm statement. This is
because the compiler does not verify such statements. They are inserted as is into the
assembly code, and potentially can cause problems if you are not sure of their effect.

• Do not use the asm statement to insert assembler directives that change the assembly
environment.

• Avoid creating assembly macros in C code and compiling with the --symdebug:dwarf (or
-g) option. The C environment’s debug information and the assembly macro expansion
are not compatible.

6.5.5 Using Intrinsics to Access Assembly Language Statements

The C55x compiler recognizes a number of intrinsic operators. Intrinsics allow you to express the meaning
of certain assembly statements that would otherwise be cumbersome or inexpressible in C/C++. Intrinsics
are used like functions; you can use C/C++ variables with these intrinsics, just as you would with any
normal function.

The intrinsics are specified with a leading underscore, and are accessed by calling them as you do a
function. For example:
int x1, x2, y;
y = _sadd(x1, x2);

Many of the intrinsic operators support saturation. During saturating arithmetic, every expression which
overflows is given a reasonable extremum value, either the maximum or the minimum value the
expression can hold. For instance, in the above example, if x1==x2==INT_MAX, the expression overflows
and saturates, and y is given the value INT_MAX. Saturation is controlled by setting the saturation bit,
ST1_SATD, by using these instructions:

BSET ST1_SATD
BCLR ST1_SATD

132 Run-Time Environment SPRU281G–December 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU281G

www.ti.com Interfacing C and C++ With Assembly Language

The compiler must turn this bit on and off to mix saturating and non-saturating arithmetic; however, it
minimizes the number of such bit changing instructions by recognizing blocks of instructions with the same
behavior. For maximum efficiency, use saturating intrinsic operators for exactly those operations where
you need saturated values in case of overflow, and where overflow can occur. Do not use them for loop
iteration counters.

The compiler supports associative versions for some of the addition and multiply-and-accumulate
intrinsics. These associative intrinsics are prefixed with _a_. The compiler is able to reorder arithmetic
computations involving associative intrinsics, which may produce more efficient code.

For example:
int x1, x2, x3, y;
y = _a_sadd(x1, _a_sadd(x2, x3)); /* version 1 */

can be reordered inside the compiler as:
y = _a_sadd(_a_sadd(x1, x2), x3); /* version 2 */

However, this reordering may affect the value of the expression if saturation occurs at different points in
the new ordering. For instance, if x1==INT_MAX, x2==INT_MAX, and x3==INT_MIN, version 1 of the
expression will not saturate, and y will be equal to (INT_MAX-1); however, version 2 will saturate, and y
will be equal to -1. A rule of thumb is that if all your data have the same sign, you may safely use
associative intrinsics.

Most of the multiplicative intrinsic operators operate in fractional-mode arithmetic. Conceptually, the
operands are Q15 fixed-point values, and the result is a Q31 value. Operationally, this means that the
result of the normal multiplication is left shifted by one to normalize to a Q31 value. This mode is
controlled by the fractional mode bit, ST1_FRCT.

The intrinsics in Table 6-14 are special in that they accept pointers and references to values; the
arguments are passed by reference rather than by value. These values must be modifiable values (for
example, variables but not constants, nor arithmetic expressions). These intrinsics do not return a value;
they create results by modifying the values that were passed by reference. These intrinsics depend on the
C++ reference syntax, but are still available in C code with the C++ semantics.

No declaration of the intrinsic functions is necessary, but declarations are provided in the header file,
c55x.h, included with the compiler.

Many of the intrinsic operators are useful for implementing basic DSP functions described in the Global
System for Mobile Communications (GSM) standard of the European Telecommunications Standards
Institute (ETSI). These functions have been implemented in the header file, gsm.h, included with the
compiler. Additional support for ETSI GSM functions is described in Section 6.5.5.2.

6.5.5.1 Descriptions of C55x Intrinsics

Table 6-9 through Table 6-15 list all of the intrinsic operators in the TMS320C55x C/C++ compiler. A
function prototype is presented for each intrinsic that shows the expected type for each parameter. If the
argument type does not match the parameter, type conversions are performed on the argument. Where
argument order matters, the order of the intrinsic’s input arguments matches that of the underlying
hardware instruction. The resulting assembly language mnemonic is given for each instruction; for some
instructions, such as MPY, an alternate instruction such as SQR (which is a specialized MPY) may be
generated if it is more efficient. A brief description is provided for each intrinsic. For a precise definition of
the underlying instruction, see the TMS320C55x DSP Mnemonic Instruction Set Reference Guide and
TMS320C55x DSP Algebraic Instruction Set Reference Guide.

Table 6-8. C55x Circular Addressing Intrinsics

Compiler Intrinsic Description

Returns the circular increment of index+incr relative to size when theseint _circ_incr(int index, int incr, unsigned int size) preconditions are met: 0 <= index < size and incr <= size.

133SPRU281G–December 2011 Run-Time Environment
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU281G

Interfacing C and C++ With Assembly Language www.ti.com

Table 6-9. C55x C/C++ Compiler Intrinsics (Addition, Subtraction, Negation, Absolute Value)

Compiler Intrinsic Assembly Description
Instruction

int _sadd(int src1, int src2) ADD Returns the saturated sum of its operands.
int _a_sadd(int src1, int src2)
long _lsadd(long src1, long src2)
long _a_lsadd(long src1, long src2)
long long _llsadd(long long src1, long long src2)
long long _a_llsadd(long long src1, long long src2)

int _ssub(int src1, int src2) SUB Returns the saturated value of the expression (src1 −
long _lssub(long src1, long src2) src2).
long long _llssub(long long src1, long long src2)

int _sneg(int src) NEG Returns the saturated value of the expression (0 − src).
long _lsneg(long src)
long long _llsneg(long long src)

int _abss(int src) ABS Returns the saturated absolute value of its operands.
long _labss(long src)
long long _llabss(long src)

Table 6-10. TMS320C55x C/C++ Compiler Intrinsics (Multiplication)

Compiler Intrinsic Assembly Description
Instruction

int _smpy(int src1, int src2) MPY Returns the saturated fractional-mode product of its
long _lsmpy(int src1, int src2) operands.
long _lsmpyu(unsigned src1, unsigned src2)
long _lsmpysu(int src1, unsigned src2)
long long _llsmpy(int sr1, int src2)
long long _llsmpyu(unsigned src1, unsigned src2)
long long _llsmpysu(int sr1, unsigned src2)

long _lmpy(int src1, int src2) MPY Returns the unsaturated integer-mode
long _lmpyu(unsigned src1, unsigned src2) (non-fractional-mode) product of its operands.
long _lmpysu(int src1, unsigned src2)
long long _llmpy(int src1, int src2)

long _lsmpyi(int src1, int src2) MPY Returns the saturated integer-mode product of its
long _lsmpyui(unsigned src1, unsigned src2) operands.
long _lsmpysui(int src1, unsigned src2)
long long _llsmpyi(int src1, int src2)
long long _llsmpyui(unsigned src1, unsigned src2)
long long _llsmpysui(int src1, unsigned src2)

long _lsmpyr(int src1, int src2) MPYR Returns the saturated fractional-mode product of its
operands, rounded as if the intrinsic _sround were used.

long _smac(long src1, int src2, int src3) MAC Returns the saturated sum of src1 and the
long _a_smac(long src1, int src2, int src3) fractional-mode product of src2 and src3.
long _smacsu(long src1, int src2, unsigned src3)
long long _llsmac(long long src1, int src2, int src3)
long long _llsmacu(long long src1,

unsigned src2,
unsigned src3)

long long _llsmacsu(long long src1,
int src2,
unsigned src3)

long _smaci(long src1, int src2, int src3) MAC Returns the saturated sum of src1 and the integer-mode
long _smacsui(long src1, int src2, unsigned src3) product of src2 and src3.
long long _llsmaci(long long src1, int src2, int src3)
long long _llsmacui(long long src1,

unsigned src2,
unsigned src3)

long long _llsmacsui(long long src1,
int src2,
unsigned src3)

long _smacr(long src1, int src2, int src3) MACR Returns the saturated sum of src1 and the
long _a_smacr(long src1, int src2, int src3) fractional-mode product of src2 and src3. The sum is

rounded as if the intrinsic _sround were used.

134 Run-Time Environment SPRU281G–December 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU281G

www.ti.com Interfacing C and C++ With Assembly Language

Table 6-10. TMS320C55x C/C++ Compiler Intrinsics (Multiplication) (continued)

Compiler Intrinsic Assembly Description
Instruction

long _smas(long src1, int src2, int src3) MAS Returns the saturated difference of src1 and the
long _a_smas(long src1, int src2, int src3) fractional-mode product of src2 and src3.
long _smassu(long src1, int src2, unsigned src3)
long long _llsmas(long long src1, int src2, int src3)
long long _llsmasu(long long src1,

unsigned src2,
unsigned src3)

long long _llsmassu(long long src1,
int src2,
unsigned src3)

long _smasi(long src1, int src2, int src3) MAS Returns the saturated difference of src1 and the
long _smassui(long src1, int src2, unsigned src3) integer-mode product of src2 and src3.
long long _llsmasi(long long src1, int src2, int src3)
long long _llsmasui(long long src1,

unsigned src2,
unsigned src3)

long long _llsmassui(long long src1,
int src2,
unsigned src3)

long _smasr(long src1, int src2, int src3) MASR Returns the saturated difference of src1 and the
long a_smasr(long src1, int src2, int src3) fractional-mode product of src2 and src3. The sum is

rounded as if the intrinsic _sround were used.

Table 6-11. TMS320C55x C/C++ Compiler Intrinsics (Shifting)

Compiler Intrinsic Assembly Description
Instruction

int _sshl(int src1, int src2) SFTS Returns the saturated value of the expression
long _lsshl(long src1, int src2) (src1<<src2). If src2 is negative, a right shift is
long long _llsshl(long long, int) performed instead.

int _shrs(int src1, int src2) SFTS Returns the saturated value of the expression
long _lshrs(long src1, int src2) (src1>>src2). If src2 is negative, a left shift is performed

instead.

int _shl(int src1, int src2) SFTS Returns the expression (src1<<src2). If src2 is negative,
long _lshl(long src1, int src2) a right shift is performed instead. No saturation is
long long _llshl(long long src1, int src2) performed.

Table 6-12. TMS320C55x C/C++ Compiler Intrinsics (Shifting and Storing)

Compiler Intrinsic Description

void _llsshlstore(long long src, int cnt, int *dst) Stores bits 16-31 of the result of a saturating (based on bit 31) shift of src
by cnt into dst using:

MOV HI(saturate(src << cnt)) , dst

void _llsshlstorer(long long, int, int*) Stores bits 16-31 of the rounded result of a saturating (based on bit 31)
void _llsshlstorern(long long, int, int*) shift of src by cnt into dst using:

MOV rnd(HI(saturate(src << cnt))), dst
_llsshlstorer rounds by adding 215 using saturating arithmetic (biased
round to positive infinity).
_llsshlstorern rounds to nearest multiple of 216 using saturating
arithmetic. Ties are broken by rounding to even.

void _llshlstorer(long long, int, int*) Stores bits 16-31 of the rounded result of shifting src by cnt using:
void _llshlstorern(long long, int, int*) MOV rnd(HI(src << cnt)), dst

_llshlstorer rounds by adding 215 using unsaturating arithmetic (biased
round to positive infinity).
_llshlstorern rounds to nearest multiple of 216 using unsaturating
arithmetic. Ties are broken by rounding to even.

135SPRU281G–December 2011 Run-Time Environment
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU281G

Interfacing C and C++ With Assembly Language www.ti.com

Table 6-13. TMS320C55x C/C++ Compiler Intrinsics (Rounding, Saturation, Bitcount, Extremum)

Compiler Intrinsic Assembly Description
Instruction

long _round(long src) ROUND Uses unsaturating arithmetic (biased round to positive
long long _llround(long long src) infinity) and clears the lower 16 bits. The upper 16 bits of

the Q31 result can be treated as a Q15 value.

long _sround(long src) ROUND Returns the value src rounded by adding 2^15 using
long long _llsround(long long src) saturating arithmetic (biased round to positive infinity)

and clearing the lower 16 bits. The upper 16 bits of the
Q31 result can be treated as a Q15 value.

long _roundn(long src) ROUND Returns the value src rounded to the nearest multiple of
long long _llroundn(long long src) 2^16 using unsaturating arithmetic and clearing the lower

16 bits. Ties are broken by rounding to even. The upper
16 bits of the Q31 result can be treated as a Q15 value.

long _sroundn(long src) ROUND Returns the value src rounded to the nearest multiple of
long long _llsroundn(long long src) 2^16 using saturating arithmetic and clearing the lower

16 bits. Ties are broken by rounding to even. The upper
16 bits of the Q31 result can be treated as a Q15 value.

int _norm(int src) EXP Returns the left shift count needed to normalize src to a
int _lnorm(long src) 32-bit long value. This count may be negative.
int _llnorm(long long src)

long _lsat(long long src) SAT Returns src saturated to a 32-bit long value. If src was
already within the range allowed by long, the value does
not change; otherwise, the value returned is either
LONG_MIN or LONG_MAX.

int _count(unsigned long long src1, BCNT Returns the number of bits set in the expression (src1 &
unsigned long long src2) src2).

int _max(int src1, int src2) MAX Returns the maximum of src1 and src2.
long _lmax(long src1, long src2)
long long _llmax(long long src1, long long src2)

int _min(int src1, int src2) MIN Returns the minimum of src1 and src2.
long _lmin(long src1, long src2)
long long _llmin(long long src1, long long src2)

Table 6-14. Compiler Intrinsics (Arithmetic With Side Effects)

Compiler Intrinsic Assembly Description
Instruction

void _firs(int *, int *, int *, int&, long&) FIRSADD Performs the corresponding instruction as follows:
void _firsn(int *, int *, int *, int&, long&) FIRSSUB int *p1, *p2, *p3, srcdst1;

long srcdst2;
...
_firs(p1, p2, p3, srcdst1, srcdst2);
_firsn(p1, p2, p3, srcdst1, srcdst2);

Which becomes (respectively):

FIRSADD *p1, *p2, *p3, srcdst1, srcdst2
FIRSSUB *p1, *p2, *p3, srcdst1, srcdst2

Mode bits SATD, FRCT, and M40 are 0.

void _lms(int *, int *, int&, long&) LMS Performs the LMS instruction as follows:

Where type is long or long long
int *p1, *p2, srcdst1;
type srcdst2;
...
_lms (p1, p2, srcdst1, srcdst2);

Which becomes:

LMS *p1, *p2, srcdst1, srcdst2

For _llslms and _llslmsi saturation is enabled.
For _llslms fractional mode is enabled

136 Run-Time Environment SPRU281G–December 2011
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU281G

www.ti.com Interfacing C and C++ With Assembly Language

Table 6-14. Compiler Intrinsics (Arithmetic With Side Effects) (continued)

Compiler Intrinsic Assembly Description
Instruction

void _abdst(int *, int *, int&, long&) ABDST Performs the corresponding instruction as follows:
void _sqdst(int *, int *, int&, long&) SQDST int *p1, *p2, srcdst1;

long srcdst2;
...
_abdst(p1, p2, srcdst1, dst);
_sqdst(p1, p2, srcdst1, dst);

Which becomes (respectively):

ABDST *p1, *p2, srcdst1, srcdst2
SQDST *p1, *p2, srcdst1, srcdst2

Mode bits SATD, FRCT, and M40 are 0.

int _exp_mant(long, long&) MANT:: Performs the MANT::NEXP instruction pair, as follows:
int _llexp_mant(long long, long long&) NEXP int src, dst2; long dst1;

...
dst2 = _exp_mant(src, dst1);

Which becomes:

MANT src, dst1 :: NEXP src, dst2

void _max_diff_dbl(long, long, long&, long&, unsigned &) DMAXDIFF Performs the corresponding instruction, as follows:
void _min_diff_dbl(long, long, long&, long&, unsigned &) DMINDIFF Where type is long or long long
void _smax_diff_dbl(long, long, long&, long&, type src1, src2, dst1, dst2;

unsigned&) int dst3;
void _smin_diff_dbl(long, long, long&, long&, unsigned&) ...
void _llmax_diff_dbl(long long, long long, _max_diff_dbl(src1, src2, dst1, dst2, dst3);

long long&, long long&, unsigned&) _min_diff_dbl(src1, src2, dst1, dst2, dst3);
void _llmin_diff_dbl(long long, long long, long long&,

Which becomes (respectively):long long&, unsigned&)
void _llsmax_diff_dbl(long long, long long, DMAXDIFF src1, src2, dst1, dst2, dst3

long long&, long long&, unsigned&) DMINDIFF src1, src2, dst1, dst2, dst3
void _llsmin_diff_dbl(long long, long long, long long&,

The smax and smin forms are performed with saturationlong long&, unsigned&)
enabled.

Table 6-15. C55x C/C++ Compiler Intrinsics (Non-Arithmetic)

Compiler Intrinsic Assembly Instruction Description

ong long _dtol(double) Reinterpret double as long (when long is 40 bits).

long long _dtoll(double) Reinterpret double as long long.

void _enable_interrupts(void) BCLR ST1_INTM Enables or disables interrupts and ensure enough
unsigned int _disable_interrupts(void) BSET ST1_INTM cycles are consumed that the change takes effect

before anything else happens.

void _restore_interrupts(unsigned int) Restores interrupts to state indicated by value
returned from _disable_interrupts .

6.5.5.2 Intrinsics and ETSI Functions

The functions in Table 6-16 provide additional support for ETSI GSM functions. Functions L_add_c,
L_sub_c, and L_sat map to GSM inline macros. The other functions in the table are run-time functions.
Additional details about these functions can be found in various ETSI documents. In particular, see
Chapter 13 (BASOP: ITU-T Basic Operators) of ITU-T Software Tool Library 2005 User's Manual found at
http://www.itu.int/rec/T-REC-G.191-200508-I/en.

Table 6-16. ETSI Support Functions

Compiler Intrinsic Description

long L_add_c(long src1, long src2) Adds src1, src2, and Carry bit. This function does not map to a single assembly
instruction, but to an inline function.

long L_sub_c(long src1, long src2) Subtracts src2 and logical inverse of sign bit from src1. This function does not map to a
single assembly instruction, but to an inline function.

137SPRU281G–December 2011 Run-Time Environment
Submit Documentation Feedback

Copyright © 2011, Texas Instruments Incorporated

http://www.ti.com
http://www.itu.int/rec/T-REC-G.191-200508-I/en
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU281G

