
ARCHIVES OF ACOUSTICS
29, 1, 1–21 (2004)

HIGH ACCURACY AND OCTAVE ERROR IMMUNE PITCH DETECTION
ALGORITHMS
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The aim of this paper is to present a method improving pitch estimation accuracy, show-
ing high performance for both synthetic harmonic signals and musical instrument sounds.
This method employs an Artificial Neural Network of a feed-forward type. In addition, octave
error optimized pitch detection algorithm, based on spectral analysis is introduced. The pro-
posed algorithm is very effective for signals with strong harmonic, as well as nearly sinusoidal
contents. Experiments were performed on a variety of musical instrument sounds and sample
results exemplifying main issues of both engineered algorithms are shown.

1. Introduction

There are two major difficulties, namely, octave errors and pitch estimation accu-
racy [1–3], that most pitch detection algorithms (PDAs) have to deal with. Octave errors
problems, seems to be present in all pitch tracking algorithms, known so far, however,
these errors are caused by different input signal properties in the estimation process.
In time- domain based algorithms [4–7], i.e., AMDF, modified AMDF [8–10] or nor-
malized cross correlation (NCC) [3, 7, 11], octave errors may be caused by low energy
content of odd harmonics. In some cases AMDF or autocorrelation methods are per-
formed first and in addition some information is gathered from calculated spectrum, in
order to decrease the possibility of estimation errors [12, 13], resulting in more accurate
pitch tracking. Such operations usually require increased computational cost, and larger
block sizes, than PDAs working in the time-domain. In the frequency domain, errors are
caused mostly by low energy content of the lower order harmonics. In cepstral [2], as
well as in autocorrelation of log spectrum (ACOLS) [14] analyses, problems are caused
by high energy content in higher frequency parts of the signal. Some algorithms oper-
ate directly on time-frequency representation, and are based on analysing trajectories of
sinusoidal components in spectrogram (sonogram) of the signal [15, 16]. On the other



2 M. DZIUBI ŃSKI and B. KOSTEK

hand, estimation accuracy problem for all mentioned domains is caused by a number of
samples representing analyzed peaks related to fundamental frequency.

There is an additional problem related to pitch detection. For example, in case of
speech signals [1, 17–20], it is very important to determine pitch almost instantaneously,
which means that processed frames of the signal must be small. This is because voiced
fragments of speech may be very short, with rapidly varying pitch. In case of musi-
cal signals, voiced (pitched) fragments are relatively long and pitch fluctuations lower.
This property of musical signals enables the use of larger segments of the signal in the
pitch estimation procedure. But for both application domains, efficient pitch detection
algorithm should estimate pitch periods accurately and smoothly between successive
frames, and produce pitch contour that has high resolution in the time-domain.

2. Spectrum peak analysis algorithm

The proposed pitch detection algorithm, a so-called Spectrum Peak Analysis (SPA),
is based on analyzing peaks in the frequency domain, representing harmonics of a pro-
cessed signal. The general concept is based on such relatively easiness of pitch determi-
nation by observing signal spectrum and especially intervals between partials that are
present in the spectrum. This is independent of the fact that some harmonics may be
absent, or they can be partially obscured by the background noise. It should, however,
be assumed that they are greater than the energy of the background noise. Estimating
pitch contour is performed in block processing, i.e., the signal is divided into blocks
with widths depending on pitch estimated for preceding blocks, whereas overlap can be
time-varying. The width of the first block is initialized to 4096 samples and is decreased
for successive blocks, if the detected pitch is relatively high, and can be represented by
lower spectrum resolution. Similarly, if estimated pitch decreases in consecutive blocks,
the block width is increased, to provide satisfying spectrum resolution. Each block is
weighted by the Hann window.

2.1. Harmonic peak frequency estimation

The first step of the estimation process, performed in each block, is finding one peak
that represents any of the signal harmonics. The largest maximum of the spectrum sig-
nal is assumed to be one of harmonics, and it is easy to establish its coordinates in terms
of frequency. The chosen peak is assumed to be at theM -th harmonic of the signal. In
practical experimentsM = 20 seemed to satisfy all tested sounds, however, settingM
to any reasonable value is possible. The natural limitation of this approach is the spec-
trum resolution. It is assumed that the minimum distanced between peaks representing
neighboring harmonics must be four samples. Therefore, if detected maximum index is
smaller thanM · d, M is automatically decreased by the algorithm to satisfy the for-
mulated condition. In some cases, for low frequency signals, block size in the analysis
must be suitably large to perform pitch tracking. The next step is calculatingM possible
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fundamental frequencies, assuming that a chosen harmonic (the largest maximum of the
spectrum signal) can be 1,2, . . . , orM -th harmonic of the analyzed sound:

Ffund[i] =
M∑

i=1

FM

i
(1)

where:
Ffund – vector of possible fundamental frequencies,

FM – frequency of the chosen (largest) harmonic.
The main concept of the engineered algorithm is testing the set ofK harmonics

related to vectorFfund, that are most likely to be peaks representing pitch. The value of
K is limited byFM as follows:

K = floor

(
Fs

M

)
(2)

where:
floor (x) – returns the largest integer value not greater thanx,

Fs – sampling frequency.
Based onM, Ffund vector andK, the matrix of frequencies used in analysis can be

formed in the following way:

FAM(i, j) =
M∑

i=1

K∑

j=1

Ffund[i] · j (3)

where:
FAM – matrix containing frequencies ofM harmonics sets.
If M is significantly larger thanK, and most energy carrying harmonics are higher

order harmonics (the energy of firstK harmonics is significantly smaller than, for ex-
ample,K, K + 1,. . . , 2 · K, or higher order harmonics), it is better to choose a set
of K consecutive harmonics representing the largest amount of energy. Therefore, fre-
quency of the first harmonic in each set (each row ofFAM) does not have to represent
the fundamental frequency. Starting frequencies of chosen sets can be calculated in the
following way:

Hmaxset[j] =
K∑

i=1

EH(i+j)·Ffund
, j = 0, ..., L− 1 (4)

where:
Hmaxset – vector containing energy of consecutiveK harmonics for the chosen set,

whereHmaxset[k] is the sum ofK harmonics energies for the following frequencies:
k · Ffund, (k + 1) · Ffund,. . . , (k + K) · Ffund, EHfund – energy of the harmonic with
frequency equal tof , L – dimension ofHmaxset vector:L = floor( Fs

Ffund
−K).
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Starting frequency of each set is based on the index representing the maximum value of
Hmaxset: Fstart[m] = indmax[m] · Ffund[m] for m = 1, . . . , M .

Finally, modifiedFAM can be formed in the following way:

FAM(i, j) =
M∑

i=1

K∑

j=1

Fstart[i] + Ffund[i] · (j − 1) (5)

2.2. Harmonic peak analysis

Each harmonics set, represented by frequencies contained in each row ofFAM is
analyzed in order to evaluate whether it is most likely to be a set of peaks related to
fundamental frequency among the remainingM − 1 sets. This likelihood is represented
by V , while V is calculated for each set in the following way:

V =
K∑

i=1

Hv[i] (6)

where:
Hv[i] – value of a spectrum component fori-th frequency for the analyzed set.

If the analyzed spectrum component is not a local maximum – left and right neighboring
samples are not smaller than the one assigned to the local maximum, then it is set at
0. Additionally, if local maxima of neighboring regions of spectrum are found,Hv is
decreased – values of the maxima found are subtracted fromHv.

Neighboring regions of the spectrum surrounding the frequencyFHv , representing
Hv, are limited by the following frequencies:

FL = FHv − Ffund

2
(7a)

FR = FHv +
Ffund

2
(7b)

where:
FL, FR – frequency boundaries of spectrum regions surroundingFHv ,
Ffund – assumed fundamental frequency of the analyzed set.
The fundamental frequency, related to the largestV , is assumed to be the desired

pitch of the analyzed signal. As observed from Figs. 1–3, three situations are possible.
For example, in Fig. 1, one can see that the analyzed spectrum peak value is not a local
maximum, therefore it is set at 0. In addition, local maxima are detected in surrounding
regions, which subtracted fromHv give negative values. It is clear that in this situation,
it is highly unlikely thatHv is a harmonic. Figure 2 presents a situation in whichHv is
a local maximum, and surrounding maxima have small values, opposite to Fig. 3, where
analyzed regions contain large local maxima. Therefore Fig. 2 represents a peak that is
most likely to be a harmonic.
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Fig. 1. Analysis of a possible harmonic peak and its surrounding region (analyzed fundamental frequency
is not related to peak frequency).

Fig. 2. Analysis of a possible harmonic peak and its surrounding region (analyzed fundamental frequency
is correctly related to peak frequency).
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Fig. 3. Analysis of a possible harmonic peak and its surrounding region (analyzed fundamental frequency
is two times larger than pitch).

3. Pitch estimation algorithm accuracy

Since the spectrum peak representing pitch is sampled with limited resolution, inter-
polation is required to improve the algorithm accuracy. Different linear methods have
been tested in order to find computationally efficient and suitable interpolation tech-
niques, however, estimating pitch based on a discrete spectrum is not a trivial task.
Problems are caused by other frequency components surrounding peak, related to pitch.
In practice, those disturbances are caused by spectral leakage of sinusoidal components
of a signal (higher order harmonics), and depend on frequency distance between those
components and their energy. Therefore, using simple interpolation methods, such as
polynomials or splines, would result in a limited performance. Artificial Neural Net-
works (ANN) seem to be suitable for this task, and are successfully used to improve
estimation accuracy, which is shown in the following sections.

3.1. Artificial Neural Network training

Three samples representing spectrum peak related to fundamental frequency have
been considered as the ANN input. Index values representing a peak have been normal-
ized to –1, 0 and 1, while 0 was treated as the index of peak maximum and indices –1
and 1 were assumed to be indices of the maximum neighboring samples. Synthetic har-
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monic signals were generated to obtain the training input data and target signal. Each
training signal was synthesized according to the following formula:

S[n] =
K∑

i=1

sin(
2πniFpitch

Fs
) · R[n]

i
(8)

where:
R – vector containing uniformly distributed (on the (0, 1) interval) pseudo-random

numbers.
Fpitch – fundamental frequency of the synthesized signal,
Fs – sampling frequency,
K – number of harmonics contained in the signalS. K is defined as follows:

floor(Fs/Fpitch).
It can be observed that a synthetic signal is most likely to have harmonics with

decreasing energies, similar to musical instrument sounds. Three training processes
were performed, employing various window sizes (different lengths of training signals):
1024, 2048 and 4096 samples, while sampling frequency was equal to 44100. Each sig-
nal was weighted by the Hann window, this was because the Hann window was also
used in the SPA estimation process. A great number of synthetic signals were generated
to obtain training data for each window size, while fundamental frequencies were ran-
domly chosen fromFmin to 4500 Hz.Fmin is the lowest possible frequency in respect of
d, depending on the window size. The neural network used in the training process was
a feed-forward, back-propagation structure with three layers. First layer contained three
neurons, the hidden layer – four neurons and the output layer – one neuron. Hyperbolic
tangent sigmoid transfer function was chosen to activate the first two layers, whilst the
linear identity function was used to activate the last layer. Weights and biases, during the
training process, were updated according to Levenberg–Marquardt optimization [21].
Trained network was used in the estimation process, resulting in performance presented
in the following section.

3.2. Improved estimation accuracy performance

Pitch estimation accuracy has been tested on synthetic signals, generated accord-
ing to Eq. 8. Since pitch fluctuations of acoustic sounds can be much greater than the
maximum error of the estimation process, using synthetic signals was necessary. The
estimation error was calculated in connection with the formulae:

f [n] =
(fstop − fstart)(n− 1)

N − 1
+ fstart, n = 1, ..., N (9)

EPDA(f [n]) =
|f [n]− PDA(Sf [n])|

f [n]
100% (10)

where:
N – number of test frequencies,
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f – vector containing test frequencies,
fstart, fstop – starting and stopping frequencies off ,
Sf [n] – test signal withf [n] pitch.

The proposed SPA algorithm, and in addition, NCC [3] and CA [2] algorithms were
implemented in theMatlab environment to analyze and compare their performance.
Table 1 presents the exemplary average estimation error for the implemented PDAs.
Pitch estimations were performed for block size equal to 2048 samples. In addition,
improvements of the estimation accuracy for SPA (2-nd order polynomial interpolation
and ANN interpolation) are presented, showing the highest performance of the Neural
Network-based approach. The average error is understood to be the arithmetic mean
of estimation errors calculated in respect of Eq. (10), wherefstart = 50 Hz, fstop =
3000 Hz andN = 1000, while signals had lengths equal to 2048 samples.

Table 1. Average pitch estimation error.

PDA: NCC CA
SPA

(not optimized)
SPA

(polynomial)
SPA

(neural network)

Pitch est. error: 3.3399% 2.8518% 0.2808% 0.00122% 0.00000405%

Figures 4–8 presented estimation errors for all tested signals concerning each al-
gorithm, showing error fluctuations over frequency changes. It can be observed that
time-domain related algorithms show a decrease in accuracy of estimation when the
signal frequency increases, as opposed to frequency-domain related algorithms, where
the situation is the opposite.

Fig. 4. Pitch estimation error of the NCC algorithm.
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Fig. 5. Pitch estimation error of the CA algorithm.

Fig. 6. Pitch estimation error of the SPA algorithm (not optimized).
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Fig. 7. Pitch estimation error of the SPA algorithm (2nd order polynomial interpolation).

Fig. 8. Pitch estimation error of the SPA algorithm (ANN-based interpolation).
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Figure 4 presents performance of the NCC algorithm, showing an increase in errors
from 0.2% for the lowest frequencies to 6% for frequencies around 3000 Hz. Figure 5
presents performance of the CA algorithm. It can be observed that in this case also,
error changes in frequencies are similar, however, fluctuations are more significant for
frequencies over 1500 Hz. Figures 6–8 present the behavior of the SPA algorithm. Fig-
ure 6 shows estimation accuracy for the engineered algorithm without interpolating har-
monic peak (i.e. frequency of the maximum value of the peak represents fundamental
frequency), resulting in error equal to 5.8% for the lowest frequencies, and decreasing
to 0.1% for frequencies around 3000 Hz. Figure 7 presents the improved performance
of the algorithm by employing 2nd order polynomial interpolation. This results in er-
rors of 0.027% for the lowest frequencies, decreasing to 0.007% for frequencies around
3000 Hz. Figure 8 shows performance of the ANN-based interpolation of the harmonic
peak. The estimated error is equal to 0.0005% for the lowest frequencies decreasing to
0.00000013% for frequencies around 3000 Hz.

4. Time domain pitch contour correction

In some cases, transients of analyzed instrument sounds, contain only or almost
only odd harmonics, therefore pitch, calculated in short terms for transient parts, can be
perceived as one octave higher than pitch calculated for blocks representing steady state
of the sound. The human brain seems to ignore this fact, and for a listener the perceived
pitch of the whole sound is in accordance with that of the steady-state. However, blocks
containing transient, duplicated in time domain, result in sound with pitch perceived as
one octave higher. This observation calls for post-processing [5], i.e., time domain pitch
contour correction. Optimizing pitch tracks is relatively easy, since such problems are
only encountered for transient parts of musical sounds and in the majority of cases pitch
contour represents the expected (perceived) fundamental frequency. In Fig. 9 one can
observe that for an oboe, for one block in the transient phase, the estimated pitch is one
octave higher than that estimated for the steady-state, however, the overall pitch was
recognized correctly.

5. Experiments and results

In order to determine the efficiency of presented SPA, 412 musical instrument sounds
were tested. Analyses of six instruments in their full scale, representing diverse groups,
and one instrument with all articulation types, were carried out. Recordings of tested
sounds were made in the Multimedia Systems Department of the Faculty of Electron-
ics, Telecommunications and Informatics, of Gdańsk University of Technology, Poland
[10]. Tables (Tabs. 2–4) and figures (Figs. 10–18) present estimated average pitch, note
played by the instrument according to ASA standard, and the nominal frequency of the
note, as specified by the ASA. Results for oboe for three types of articulations:non
legato, staccato and portatoare presented in Tables. 2–4. Results for other instruments,
dynamics and articulations are presented in Figs. 10–18.
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Table 2. Pitch estimation results foroboe(articulation:non legato, dynamics:mezzo forte).

Tone
(ASA)

Estimated
pitch [Hz]

Nominal
freq. [Hz]

Octave
error

A3# 234.24 233.08 NO

B3 245.46 246.94 NO

C4 263.22 261.63 NO

C4# 279.8 277.18 NO

D4 295.94 293.66 NO

D4# 314.52 311.13 NO

E4 332.35 329.63 NO

F4 351.04 349.23 NO

F4# 371.95 369.99 NO

G4 394.19 392 NO

G4# 417.42 415.3 NO

A4 442.4 440 NO

A4# 471.37 466.16 NO

B4 498.13 493.88 NO

C5 528.85 523.25 NO

C5# 563.3 554.37 NO

D5 597.98 587.33 NO

D5# 632.25 622.25 NO

E5 669.99 659.26 NO

F5 708.24 698.46 NO

F5# 755.94 739.99 NO

G5 799.07 783.99 NO

G5# 842.1 830.61 NO

A5 888.01 880 NO

A5# 936.42 932.33 NO

B5 997.3 987.77 NO

C6 1052.2 1046.5 NO

C6# 1124.5 1108.7 NO

D6 1185.5 1174.7 NO

D6# 1272.8 1244.5 NO

E6 1326.3 1318.5 NO

F6 1407.1 1396.9 NO

F6# 1502.1 1480 NO
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Table 3. Pitch estimation results foroboe(articulation:portato, dynamics:mezzo forte).

Tone
(ASA)

Estimated
pitch [Hz]

Nominal
freq. [Hz]

Octave
error

A3# 234.98 233.08 NO

B3 246.48 246.94 NO

C4 263.76 261.63 NO

C4# 279.92 277.18 NO

D4 296.12 293.66 NO

D4# 313.06 311.13 NO

E4 332.96 329.63 NO

F4 352.04 349.23 NO

F4# 373.6 369.99 NO

G4 396.97 392 NO

G4# 422.38 415.3 NO

A4 447.6 440 NO

A4# 472.71 466.16 NO

B4 500.22 493.88 NO

C5 530.36 523.25 NO

C5# 564.36 554.37 NO

D5 594.88 587.33 NO

D5# 631.44 622.25 NO

E5 668.94 659.26 NO

F5 706.49 698.46 NO

F5# 753.12 739.99 NO

G5 798.01 783.99 NO

G5# 846.62 830.61 NO

A5 896.12 880 NO

A5# 947.18 932.33 NO

B5 1005.1 987.77 NO

C6 1058.4 1046.5 NO

C6# 1131.3 1108.7 NO

D6 1202.9 1174.7 NO

D6# 1296.1 1244.5 NO

E6 1435.5 1318.5 NO
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Table 4. Pitch estimation results foroboe(articulation: doublestaccato,dynamics:mezzo forte).

Tone
(ASA)

Estimated
pitch [Hz]

Nominal
freq. [Hz]

Octave
error

A3# 234.39 233.08 NO

B3 245.85 246.94 NO

C4 264.03 261.63 NO

C4# 279.62 277.18 NO

D4 294.79 293.66 NO

D4# 313.57 311.13 NO

E4 331.49 329.63 NO

F4 351.44 349.23 NO

F4# 374.11 369.99 NO

G4 396.23 392 NO

G4# 422.11 415.3 NO

A4 442.7 440 NO

A4# 471.08 466.16 NO

B4 498.67 493.88 NO

C5 532.04 523.25 NO

C5# 568.96 554.37 NO

D5 598.54 587.33 NO

D5# 635.64 622.25 NO

E5 669.15 659.26 NO

F5 708.18 698.46 NO

F5# 754.25 739.99 NO

G5 798.97 783.99 NO

G5# 850.02 830.61 NO

A5 898.31 880 NO

A5# 941 932.33 NO

B5 1007.5 987.77 NO

C6 1068.4 1046.5 NO

C6# 1152.3 1108.7 NO

D6 1217.7 1174.7 NO

D6# 1298.3 1244.5 NO

E6 1425.6 1318.5 NO

F6 1494.5 1396.9 NO
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Fig. 9. Octave fluctuations of pitch in transient of oboe (non legato).

Fig. 10. Pitch estimation results for baritone saxophone (articulation:non legato,dynamics: forte,
range: C2# – A4).
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Fig. 11. Pitch estimation results for bassoon (articulation:non legato, dynamics: forte, range:
A1# – C5).

Fig. 12. Pitch estimation results for trumpet (articulation:non legato, dynamics: forte, range:
E3 - G5#).
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Fig. 13. Pitch estimation results for tuba F (articulation:non legato, dynamics:forte, range: F1 - C4#).

Fig. 14. Pitch estimation results for viola (articulation:non legato, dynamics:forte, range: C3 - A6).
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Fig. 15. Pitch estimation results for oboe (articulation:non legato, dynamics:forte, range: A3# - F6).

Fig. 16. Pitch estimation results for oboe (articulation:non legato, dynamics:piano, range: A3# - F6# ).
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Fig. 17. Pitch estimation results for oboe (articulation:vibrato, dynamics:mezzo forte, range: A3# – F6).

Fig. 18. Pitch estimation results for oboe (articulation: singlestaccato, dynamics:mezzo forte, range:
A3# – G6).
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As seen from tables and figures presented, no octave related errors were detected
by the engineered algorithm. Different articulations and dynamics of sounds seemed
not to affect the octave error estimation accuracy of the SPA. Differences, sometimes
significant, between estimated pitch and tone frequency arise as the result of musicians
playing solo. Moreover, instruments were not tuned to exactly the same pitch before the
recordings.

6. Conclusion

The proposed algorithms have been tested on a variety of sounds with differentiated
articulations and dynamics, showing high resistance to octave errors (octave error was
not detected among all tested sounds). In addition, there is no limitation to harmonic
sounds in the analysis (while periodicity has to be maintained), which is the case with
other algorithms, such as, for example, CA and ACOLS algorithms. Moreover, energy
of harmonics does not have to be concentrated around a fundamental frequency, which is
an important issue for both: NCC and AMDF algorithms. The main disadvantage of the
SPA presented is its limited frequency range for small window sizes (lower boundary).
On the other hand, the NCC algorithm has an extended lower frequency limit. However,
in case of fast pitch fluctuations of low pitched sounds, the overlap can be decreased
significantly, while keeping large window sizes and resolution of calculated pitch track
may be preserved.

In addition, presented algorithm accuracy optimization seems to be very effective,
resulting in very precise pitch estimation. An optimized SPA algorithm gives far more
precise results than classic PDAs, these characteristics may be useful in sound separa-
tion and parameterization processes.
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