Systems software design

Software build configurations; Debugging, profiling & Quality
Assurance tools

Who are we?

Krzysztof Kakol Jarostaw Swiniarski

Software Developer Software Developer

Presentation based on materials prepared by
Andrzej Ciarkowski, M.Sc., Eng.

outline

* Build configurations
. Debuggmgtools

Debugger features
* Remote debugging
* Post-mortem analysis
* Thetools

* Profiling tools
* Program code hotspots
* The tools

* Quality assurance
* Coverage tracking
* Tracing memory allocation issues
* Thetools

build configurations

* When creating a new project, most modern IDEs will create two
build configurations: Debug and Release

* As the names suggest, the purpose of Debug configuration is to
perform the debugging (an actually the most of the development)
and the Release is what you ship to the customers

* Watch out for subtle bugs, which occur only in Release build!
* Debugging such build is painfully hard, but sometimes unavoidable

* That’s why most non-trivial software system rely not only on debugging but
also implement some kind of execution logging

build configurations

Debug

Compiler-introduced optimizations are
turned off

Code inlining is turned off

Debugging macros & functions do work (like
e.g. assertions)

Debugging symbols are present in the code
Code runs much much slower

g++ -g -00 source.cpp

Release

Optimizations are turned on and make the
debugging unpredictable: code is
reordered, variables are optimized out,
stack frames are being omitted

Debugging macros are undefined or do
nothing

Debugging symbols are stripped (or moved
to a separate files)

Code runs at full speed

g++ -02 -DNDEBUG source.cpp

Example (inlining)

public int CallerMethod(int arg)

1

public int CallerMethod(int arg)

1

var multiplied = arg * 10;

var multiplied = MultiplyByTen(arg);

return multiplied; return multiplied;

L
¥

public int MultiplyByTen(int i)

1

return 1*10;

3 !
¥

10.04.2017

assertions

* Conditions the developer assumes will be always met
* Introduced through the use of assert macro (C/C++), function or keyword
* In Release mode the assertions resolve to nothing

* In Debug mode, assertions will cause the program to be stopped with
some debugging message, abort function will be called causing the
SIGABRT (Unix) and core dump for post-mortem debugger

* Use assertions for verifying pre- and post-conditions, not for regular
runtime error handling!

#include <cassert> /* use #include <assert.h> for C source */
| assert(buf_.size() >= overlap_); I

switching build configurations

m dsp++-wcl2 - Microsoft Visual Studio Y2
File Edit VWiew Ot5 Project Build Debug Team Tools Test Apalyze Window Hel

Q- B-2 W Q- - P Local Windows Debugger -~ Auto =|| Debug = | x54 -
&

File Edit Source Refactor Mavigate Search Project Run Window Help

- = = IErl - - Ii- E E E - - c vE - - - = - vE -
[Project Explorer 23] 1Debug 7 = B | [J] LibTestjava &2
2 Debug-MSVC
b £ androlab-test =0 - 18 /*+[]
4 E& dsp++ [dsp++ mag v | 3 Debug-MacOSK r 4 package org.ratlab.test;
] . 5
b [l Includes 4 Debug-MinGW 5% import junit.framework.TestCase;[]
i (5 include 5 Release 12
13
4 & src 6 Release-MSVC 145 =
4 g :;: 7 Release-MacO5X 15 * @author Andrzed Ciarkowski <mailto:an
[» 16 *
b 2y mkfilter & Release-MinGW 17 */
b @ remez 18 public class LibTest extends TestCase {
19

debugging

One of the firsts computers - Mark |l

Figure 5 Mark 11: Relay Cubicles

One of the firsts bugs

94
0 Gt Oud-w M 25 | {./-,1,7“ 7.032 gy o015 .
/000 . h’Q}J "aw/w-\/ o BT EVCOIS ok
| 1370c (03 MP -me L) =b3) 74/5 71505’7'(0
B PR OB= R D JLavvbyls }

1306Pers

(B2 A .Snl'-ff—e‘ Co,sl,
1szs | AR N\u L+

s
— i =

\Say
: "‘\
60 a, St °'{' l’“‘l Lem“ {ouni I
ws Ll 3.,9»« |

10.04.2017

e

|

= ;;:_,(stug.dmsk) v
*ﬁggiﬁt—»—ﬁﬁ-—— ~—~——+ — !
I

9

debugging

* The debugger is a tool for dynamic analysis of other programs used
for finding and identifying programming errors

* Most IDEs include integrated debugger, either own or using GDB
(GNU Debugger)

typical debugger features

* Step-by-step execution

* Execute program code either line-by-line, or instruction-by-instruction,
examining the results of each call

* Modes: step over, step into, step out, continue to line

| . e 266 1
» Setting program breakpoints

* Suspend program execution when a specific source code line is executed or
some other condition occurs

* (Call stack

* Show the stack of function calls allowing to visualize
“How we got here?”

[=lint main(int argc, char* argv[])

{

I if (argc != 2 && argc 1= 4) {

std::cerr << "missing program arguments\n”;
usage();

return EXIT_FAILURE;

TS 4RRaenRaRRaRaAaaRaRaRa AR aaReaRRIRaRaRRaRaReARaARRaIanRRARARRE)
Mame

© ratlab.exelrain(int arge, char * * argv) Line 32
ratlab.exe!_trnainCRTStartup() Line 626
ratlab.exelrmainCRTStartup() Line 466
kernel32.dIl'BaseThreadInit Thunk()
ntdll.dll!RtlUserThreadStart()

typical debugger features

[] LO Ca | S/Wa tC h e S LOEAIS ettt e e e D D T D e L e e . w0 I e
. . Mame Value Type
* Examine value of local variables o anc 1 " e
I @ argv (0000000000372a70 {0:0000000000372a80 "D\ Devel\\ratlabtudd\\Debughhral char **

at any point of time or watch the
specific variable how its value change

* Modify value of variables while program is being run

* Threads
Threads
* Examine state of program’s threads, se: - X search CaliStack | C -
SWItCh between them’ ShOW eaCh 1] Managed ID Category MName Location Priority
) . A Process ID: 103536 (1 thread)
thread’s call StaCk, dlagnose deadlocl v o w0 o %4 Main Thread Main Thread v ratlab.exelmain Normal
* Memory

* Examine & modify contents of program’s address space

typical debugger features

int main{int argc, char* argv[])

@ D I Sa Sse m b |y éBBBBBBHFlFZSFB mov gword ptr [rsp+leh],rdx

22020BE13F1F25FS mov dword ptr [rsp+2],ecx
280888213F1F25F push rdi
* Show the program code as assembly- soomeisriasrs b rap.zon
3
2008088 13F1F 2684 aAgh
level Coosmeioraies o s ek

200208213F1F268E rep stos dword ptr [rdi]
! SE0RBBE13FIF2618 mov ecx,dword ptr [argc]
m n e m O n ICS 2OESBRRL13IF1F2617 mov gword ptr [rsp+lFeh],BFFFFFFFFFFFFFFFER
SE0BDBE13F1F2623 mov rax,qword ptr [_ security_cookie (@13Fz2e38esh)]
2000BRRL3IF1F2624A XOr rax,rsp

@ Step th rough the assembly COde 200000213F1F262D mov gword ptr [rsp+278h],rax

if (argc != 2 && argc != 4) {
© 2229098813F1F2635 Cmp dword ptr [argc],2

* Useful for spotting very hard to mEmLE e mR e
. 17 . 7) 2E0808013F1F2647 Je main+7Bh (@13F1F266Bh)
std::cerr << "missing program argumentsin®;
find/”mysterious” bugs ta:ccere <c “aiss tsue
220808013F1F2649 lea rdx, [®i_z+4agh (@13F1FEDEEh)]
BE0BBBE13F1F2658 mov rcx,quord ptr [__imp std::cerr (813F285178h)]
o Assembly Code iS inte rleaved With the 220808813F1F2657 call std: :operator<<c<std: :char_traits<char»> » (813F1F11&Dh}
(1;
. BBBBBBm::iE:EEC call usage (B13F1F11A4h)
actual programming language code — e o e
8BEEBBR13F1F266E jmp main=48Eh (@13F1F2ATEh)

nice way to learn some assembly ;>)

if (2 == argc) try {
2e0ePee13F1F2668 Cmp dword ptr [argc],2
20E8BBE13F1F2673 jne main+2Ceh (@13F1F28Beh)
#1fdef _WIN32

int dev = -1;
2008BRR13F1F2679 mov dword ptr [rsp+34h],@FFFFFFFFh
#endif

if (8 == std::strcmp(argv[1], "-h"} || & == std::strcmp(argv[1], "--help™))

typical debugger features

Remote debugging

Install “debugging stub” on another computer

Connect your local debugger (master) to the remote stub using network or
serial port connection

Debug remote program as it was running on the local machine

Useful for:
* Debugging low-level programs, e.g. OS kernel, device drivers
* Debugging programs running in constrained environments, e.g. mobile phone,
embedded system
* Debugging User Interface problems, when interacting with the Ul makes it impossible
to spot the problem

typical debugger features

* Attaching debugger to running process

* Useful for debugging programs running in specific environments,
e.g. operating systems services/daemons, COM objects, code
running in application servers

* Debugging shared libraries loaded by other programs

* Modify program execution path by messing with its internal
state, discover security vulnerabilities, design & spread viruses!

typical debugger features

Post-mortem debugging

Examining the state of crashed application at the moment of the crash
On Unix — examining the “core dump” — core file

On Windows — possible through dbghelp.dll library, program must be explicitly
written to support dumping of minidump file

Usually the sole glance at the call stack at the time of the crash (what instruction
was being executed & its context) is enough to trace back the reason of the crash

This information is invaluable!
Just load the dump file into the debugger and

“run” it like normal code... Ea
Force core dump by calling abort() inserting scoL. AP i teDuma(

. . _In_ HANDLE hProcess,

failed assertion Cin_ DioRD processc,

In HANDLE hFile,

In MINIDUMP_TYPE DumpType,

In BMINIDUMP_EXCEPTION_INFORMATION ExceptionParam,
In PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam,

In PMINIDUMP_CALLBACK_INFORMATION CallbackParam
13

tips

* The Debugger is probably the single important i
reason for using your IDE of choice instead of some . A

manual build system & generic text editors X b

° Learn & use keyboard shortcuts of your IDE’s O e
debugger; that’ll boost your productivity T T :
e n O r m O u S Iy Exceptions... | | Ctrl+ Al+E

Performance and Diagnostics Alt+F2

* The only reason for the great success of MS G S =
VisualStudio is that their visual debugger was B —
freaking awesome, as the compiler always was @ Quikiltcn. i3
obsolete & nonstandard ”

Mew Breakpoint r

* Most (all?) non-MS IDEs for C/C++ rely upon GDB & Delete Al Breskpoins CueshitoF9

Disable All Breakpoints

which is very powerful but also generally hard to
use (command-line driven) e

Save Dump As...

the tools

* Microsoft Visual Studio — integrated debugger, probably the best one ever

* GDB —the “standard” debugger for Linux/Unix, but also usable on Windows;
command-line interface

* Eclipse — quite nice GUI interface to GDB, closing the gap between MSVC; built-
in powerful debugger for Java; also usable for remote debugging Android apps

* Xcode — Apple’s own IDE with debugger; runs on Mac and allows to remotely
debug iOS apps

* WinDbg — Microsoft’s debugger for kernel-level remote debugging (device
drivers etc.)

* DDD, Insight — a front ends for GDB, better than nothing...
* cgdb —terminal-based GUI for GDB

Programmers waste enormous amounts of time thinking about, or
worrying about, the speed of noncritical parts of their programs, and
these attempts at efficiency actually have a strong negative impact
when debugging and maintenance are considered. We should forget
about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%.

Donald Knuth

program code profiling & optimization

* “Profiling” — dynamic analysis of program, measuring the execution
time, memory use etc.

* Most naive/ad hoc approach — use explicit timing calls to measure
the execution time of a code fragment

* Systematic approach — use profiler to perform various kinds of
measurements, like:

* Instrumentation —inserting timing calls invisible for the developer into
binary code on each or chosen instructions

* Sampling — use processor hardware features to sample the call stack of the
program with specified frequency

hot spots

* Proper use of profiler allows to identify hot spots in the program code

* Hot spotis a fragment of code, which is executed often/the program
spends most of its execution time within it

* There’s no sense in hand-optimizing the fragments of code which are not
hotspots: their influence on the actual execution time is marginal

* Optimizing the code of hotspots can substantially improve program’s
performance

* The decision on performing optimizations is senseless without knowing
the actual hotspots

profiling other measurements

* Profilers may be used also to measure

* Memory use — through special functions replacing standard memory
allocation features or code instrumentation

* 1/0 performance — using e.g. operating system services (counters)

* Some languages have built-in support for these measurements —
e.g. C#, Java

profiler drawbacks

* The instrumentation/process of taking of measurements performed
by the profiler may falsify the gathered data

* Too fine-grained instrumentation will cause the profiling code to
become the actual hotspot

* Profiling in the real world is the subject to “uncertainty principle”
(less true with sampling, more with instrumentation)!

profiling tools

Microsoft Visual Studio — built-in profiler based on CPU sampling or
instruction instrumentation, also profiling memory use in .NET
applications

Intel VTune — Intel’s powerful profiler with features for optimizing
multithreaded code (thread contention, deadlock detection)

gprof — GNU Profiler, based on compiler-assisted instrumentation,
use with gcov for checking code coverage

Valgrind — profiler detecting also memory leaks & measuring
memory usage

guality assurance tools

» Statical or dynamic analysis of code in order to find problems
beyond these typically detected by the compiler

* Examples
* Detecting memory leaks at runtime
* Checking code coverage, detecting dead/unreachable code

memory leak detection

* Memory leaks is a common problem with languages lacking Garbage Collector (C/C++) — each allocated
memory chunk must be freed manually, otherwise the memory is lost

* Long running leaking code will eventually eat up all virtual memory causing performance drop, and finally
crash

* Memory leak detection tools perform instrumentation of memory allocation functions to trace each chunk
of memory and indicate which chunks were leaked

* Actually, memory leaks are also possible with Garbage-Collected languages but it’s much harder to do ;>

try {
UglyBigObject obj = new UglyBigObject;
| throw std::exception("gotchal™);
delete obj

h
catch (...)

memory leak detection tools

* Visual Leak Detector — library for Visual C++ which replaces
standard allocation functions with its own

* Valgrind — memory leak detection tool for Unix (also a profiler)

* but also — use smart pointers for managing lifetime of heap-
allocated objects!

try {
std::unique ptr<UglyBigObject> obj(new UglyBigObject);
throw std::exception("gotchal™);

h
catch (...)

code analysis & coverage tools

* Detect unreachable code — unreachable (dead) code is often a
symptom of programming mistake

* Code coverage is a measure describing how much of the source
code is covered by a test suite
* Code which is never tested can never be sure to be working right

* Tools:
* Profilers (MSVC, VTune)
° gcov
* Also detect numerous other problems...

Questions?

Krzysiek kkakol@pgs-soft.com

Jarek jswiniarski@pgs-soft.com

WWW.pgs-soft.com

