
Systems software design

Software build configurations; Debugging, profiling & Quality 
Assurance tools



Krzysztof Kąkol

Software Developer

Who are we?

2

Jarosław Świniarski

Software Developer 

Presentation based on materials prepared by 

Andrzej Ciarkowski, M.Sc., Eng. 



outline

• Build configurations

• Debugging tools
• Debugger features
• Remote debugging
• Post-mortem analysis
• The tools

• Profiling tools
• Program code hotspots
• The tools

• Quality assurance
• Coverage tracking
• Tracing memory allocation issues
• The tools



build configurations

• When creating a new project, most modern IDEs will create two 
build configurations: Debug and Release

• As the names suggest, the purpose of Debug configuration is to 
perform the debugging (an actually the most of the development) 
and the Release is what you ship to the customers

• Watch out for subtle bugs, which occur only in Release build!
• Debugging such build is painfully hard, but sometimes unavoidable

• That’s why most non-trivial software system rely not only on debugging but 
also implement some kind of execution logging



Debug

Compiler-introduced optimizations are 
turned off

Code inlining is turned off

Debugging macros & functions do work (like 
e.g. assertions)

Debugging symbols are present in the code

Code runs much much slower

g++ -g –O0 source.cpp

Release

Optimizations are turned on and make the 
debugging unpredictable: code is 
reordered, variables are optimized out, 
stack frames are being omitted

Debugging macros are undefined or do 
nothing

Debugging symbols are stripped (or moved 
to a separate files)

Code runs at full speed

g++ -O2 –DNDEBUG source.cpp

build configurations



compiler optimization

Example (inlining)

10.04.2017 6



assertions

• Conditions the developer assumes will be always met

• Introduced through the use of assert macro (C/C++), function or keyword

• In Release mode the assertions resolve to nothing

• In Debug mode, assertions will cause the program to be stopped with 
some debugging message, abort function will be called causing the 
SIGABRT (Unix) and core dump for post-mortem debugger

• Use assertions for verifying pre- and post-conditions, not for regular 
runtime error handling!



switching build configurations



One of the firsts computers - Mark II One of the firsts bugs

debugging

10.04.2017 9



debugging

• The debugger is a tool for dynamic analysis of other programs used 
for finding and identifying programming errors

• Most IDEs include integrated debugger, either own or using GDB 
(GNU Debugger) 



typical debugger features

• Step-by-step execution
• Execute program code either line-by-line, or instruction-by-instruction, 

examining the results of each call
• Modes: step over, step into, step out, continue to line

• Setting program breakpoints
• Suspend program execution when a specific source code line is executed or 

some other condition occurs

• Call stack
• Show the stack of function calls allowing to visualize 

“How we got here?”



typical debugger features

• Locals/watches
• Examine value of local variables

at any point of time or watch the 
specific variable how its value changes

• Modify value of variables while program is being run

• Threads
• Examine state of program’s threads,

switch between them, show each
thread’s call stack, diagnose deadlocks

• Memory 
• Examine & modify contents of program’s address space



typical debugger features

• Disassembly
• Show the program code as assembly-

level 
mnemonics

• Step through the assembly code

• Useful for spotting very hard to 
find/”mysterious” bugs

• Assembly code is interleaved with the 
actual programming language code –
nice way to learn some assembly ;>



typical debugger features

• Remote debugging
• Install “debugging stub” on another computer

• Connect your local debugger (master) to the remote stub using network or 
serial port connection

• Debug remote program as it was running on the local machine

• Useful for:
• Debugging low-level programs, e.g. OS kernel, device drivers

• Debugging programs running in constrained environments, e.g. mobile phone, 
embedded system

• Debugging User Interface problems, when interacting with the UI makes it impossible 
to spot the problem



typical debugger features

• Attaching debugger to running process
• Useful for debugging programs running in specific environments, 

e.g. operating systems services/daemons, COM objects, code 
running in application servers

• Debugging shared libraries loaded by other programs

• Modify program execution path by messing with its internal 
state, discover security vulnerabilities, design & spread viruses!



typical debugger features

• Post-mortem debugging
• Examining the state of crashed application at the moment of the crash
• On Unix – examining the “core dump” – core file
• On Windows – possible through dbghelp.dll library, program must be explicitly 

written to support dumping of minidump file
• Usually the sole glance at the call stack at the time of the crash (what instruction 

was being executed & its context) is enough to trace back the reason of the crash
• This information is invaluable!
• Just load the dump file into the debugger and

“run” it like normal code…
• Force core dump by calling abort() inserting

failed assertion



tips

• The Debugger is probably the single important 
reason for using your IDE of choice instead of some 
manual build system & generic text editors

• Learn & use keyboard shortcuts of your IDE’s 
debugger; that’ll boost your productivity 
enormously

• The only reason for the great success of MS 
VisualStudio is that their visual debugger was 
freaking awesome, as the compiler always was 
obsolete & nonstandard

• Most (all?) non-MS IDEs for C/C++ rely upon GDB 
which is very powerful but also generally hard to 
use (command-line driven)



the tools

• Microsoft Visual Studio – integrated debugger, probably the best one ever

• GDB – the “standard” debugger for Linux/Unix, but also usable on Windows; 
command-line interface

• Eclipse – quite nice GUI interface to GDB, closing the gap between MSVC; built-
in powerful debugger for Java; also usable for remote debugging Android apps

• Xcode – Apple’s own IDE with debugger; runs on Mac and allows to remotely 
debug iOS apps

• WinDbg – Microsoft’s debugger for kernel-level remote debugging (device 
drivers etc.)

• DDD, Insight – a front ends for GDB, better than nothing…

• cgdb – terminal-based GUI for GDB 



Programmers waste enormous amounts of time thinking about, or 
worrying about, the speed of noncritical parts of their programs, and 
these attempts at efficiency actually have a strong negative impact 
when debugging and maintenance are considered. We should forget 
about small efficiencies, say about 97% of the time: premature 
optimization is the root of all evil. Yet we should not pass up our 
opportunities in that critical 3%.

Donald Knuth



program code profiling & optimization

• “Profiling” – dynamic analysis of program, measuring the execution 
time, memory use etc.

• Most naive/ad hoc approach – use explicit timing calls to measure 
the execution time of a code fragment

• Systematic approach – use profiler to perform various kinds of 
measurements, like:
• Instrumentation – inserting timing calls invisible for the developer into 

binary code on each or chosen instructions
• Sampling – use processor hardware features to sample the call stack of the 

program with specified frequency



hot spots

• Proper use of profiler allows to identify hot spots in the program code

• Hot spot is a fragment of code, which is executed often/the program 
spends most of its execution time within it

• There’s no sense in hand-optimizing the fragments of code which are not 
hotspots: their influence on the actual execution time is marginal

• Optimizing the code of hotspots can substantially improve program’s 
performance

• The decision on performing optimizations is senseless without knowing 
the actual hotspots



profiling other measurements

• Profilers may be used also to measure
• Memory use – through special functions replacing standard memory 

allocation features or code instrumentation

• I/O performance – using e.g. operating system services (counters)

• Some languages have built-in support for these measurements –
e.g. C#, Java



profiler drawbacks

• The instrumentation/process of taking of measurements performed 
by the profiler may falsify the gathered data

• Too fine-grained instrumentation will cause the profiling code to 
become the actual hotspot

• Profiling in the real world is the subject to “uncertainty principle” 
(less true with sampling, more with instrumentation)!



profiling tools

• Microsoft Visual Studio – built-in profiler based on CPU sampling or 
instruction instrumentation, also profiling memory use in .NET 
applications

• Intel VTune – Intel’s powerful profiler with features for optimizing 
multithreaded code (thread contention, deadlock detection)

• gprof – GNU Profiler, based on compiler-assisted instrumentation, 
use with gcov for checking code coverage

• Valgrind – profiler detecting also memory leaks & measuring 
memory usage



quality assurance tools

• Statical or dynamic analysis of code in order to find problems 
beyond these typically detected by the compiler

• Examples
• Detecting memory leaks at runtime

• Checking code coverage, detecting dead/unreachable code



memory leak detection

• Memory leaks is a common problem with languages lacking Garbage Collector (C/C++) – each allocated 
memory chunk must be freed manually, otherwise the memory is lost

• Long running leaking code will eventually eat up all virtual memory causing performance drop, and finally 
crash

• Memory leak detection tools perform instrumentation of memory allocation functions to trace each chunk 
of memory and indicate which chunks were leaked

• Actually, memory leaks are also possible with Garbage-Collected languages but it’s much harder to do ;>



memory leak detection tools

• Visual Leak Detector – library for Visual C++ which replaces 
standard allocation functions with its own

• Valgrind – memory leak detection tool for Unix (also a profiler)

• but also – use smart pointers for managing lifetime of heap-
allocated objects!



code analysis & coverage tools

• Detect unreachable code – unreachable (dead) code is often a 
symptom of programming mistake

• Code coverage is a measure describing how much of the source 
code is covered by a test suite
• Code which is never tested can never be sure to be working right

• Tools:
• Profilers (MSVC, VTune)
• gcov
• Also detect numerous other problems…



Questions?

10.04.2017 29



Krzysiek kkakol@pgs-soft.com

Jarek jswiniarski@pgs-soft.com

www.pgs-soft.com


