
2017-03-15

1

Systems software design

Methods of system analysis and design

Krzysztof Kąkol

Software Developer

PGS Software S.A.

Jarosław Świniarski

Software Developer

PGS Software S.A.

Who are we?

2

Presentation based on materials prepared by

Andrzej Ciarkowski, M.Sc., Eng.

2017-03-15

2

• Gathering theoretical knowledge

• Learning basic techniques of software development

• Learning about processes in real business
environment

Course objectives

3

1. Methods of systems design and analysis
2. IT systems project management. Scrum. Team forming
3. Version control systems. Documentation
4. Runtime configuration. Debugging and profiling
5. Basic design patterns
6. Multithreading. Operating system services
7. Network communication. Shared libraries
8. Exam 

Course plan

4

2017-03-15

3

Why we learn that?

5

SmartHome
SmartWear

Internet of
things

Cloud
computing

Mobile
platforms

Video on
demand

SmartTV

Semantic
Web

VoIP

Computing
Everywhere

3D Printing

BigData

DLNA

IT systems are ubiquitous…

• Project management – Scrum

• Systems architecture – N-Tier, Domain-Driven Design,
Hexagonal

• Systems development processes – Test Driven
Development, Behavior Driven Development

• Code quality and maintainability – SOLID, Clean
Architecture

What are current top trends?

6

2017-03-15

4

• Waterfall project management

• Unified Modelling Language

• Formal ways of gathering requirements

• …well… that still works, but…

A little bit about the past…

7

… it can result in that:

A little bit about the past…

8

2017-03-15

5

Unified Modelling Language

9

• UML is a graphical language allowing to visualize system’s
architectural blueprints as diagrams

• UML diagrams represent two views of system model

• Static (structural) view with objects, attributes, operations and
relationships

• Dynamic (behavioral) view focusing on collaboration between objects and
state changes

• The UML diagrams are just a view (projection) of the model; the
model exists without the diagrams as well, yet the diagrams allow
to visualize it

UML

10

2017-03-15

6

• Emphasize the things that must be present in the system being
modeled

• Used for documenting the software architecture of systems

• Types
• Class diagram

• Component diagram

• Object diagram

• Composite structure diagram

• Deployment diagram

• Package diagram

UML – structural diagrams

11

• Emphasize what must happen in the system being modeled

• Used to describe the functionality of the system

• Types

• Activity diagram

• Interaction diagrams

• State diagram

• Use Case diagram

UML – behavioral diagrams

12

2017-03-15

7

• Describes the structure of a system by showing the system’s
classes, their attributes, operations and relationships among
objects

• The most common of UML diagrams

• Also, one of the most complex ones

UML – class diagram

13

• Graphical representation of workflows
of activities and actions, show
the overall flow of control

UML – activity diagram

14

2017-03-15

8

• The representation of user’s interaction
with the system

UML – use case diagram

15

• Shows object interactions arranged in
time sequence

• Associated with realization of use cases

UML – sequence diagram

16

2017-03-15

9

Methods of software
development

17

• Test-Driven Development

• Red-Green-Refactor:

• Write test first

• Check that it doesn’t pass (Red phase)

• Create naive implementation to make it pass (Green phase)

• Refactor to make your code better

• Many tools supporting TDD, for different languages

Methods of software development

18

2017-03-15

10

• Behavior-Driven Development

• Specify behaviors of the system

• Used to make specifications in constant cooperation with the customer

• Provides means to create software with highest business value

Methods of software development

19

Behavior-Driven Development – sample scenario:
 Story: Returns go to stock

In order to keep track of stock
As a store owner
I want to add items back to stock when they're returned

Scenario 1: Refunded items should be returned to stock
Given a customer previously bought a black sweater from me
And I currently have three black sweaters left in stock
When he returns the sweater for a refund
Then I should have four black sweaters in stock
…

Methods of software development

20

2017-03-15

11

Domain-Driven Design

21

• Why Domain-Driven Design?

• Core ingredients of DDD

• Building blocks

Domain-Driven Design

22

2017-03-15

12

Eric Evans:

Domain-Driven Design: Tackling Complexity in the Heart of Software

Why DDD?

23

Problems

New language

Libraries

Magic methods
Magic acronyms

New servers

New framework

New way of
thinking

• Rules and patters

• Code testability

• Problems and domain language

• Experience

Why DDD?

24

2017-03-15

13

DDD core ingredients

25

• Expert in a selected domain

• Domain expert must be available for the team

• Expert provides behavior descriptions

Domain experts

26

2017-03-15

14

• Core domain

• Generic/supporting subdomains

Core domain and generic subdomains

27

• Created with domain expert

• Simplifies communication

Ubiquitous language

28

2017-03-15

15

Big Ball Of Mud

Bounded context

29

• Modelling of a single domain

• Subdomain -> limited application context

• Real life:

• Ideally – separated BCs

• Practically – shared objects

Bounded context

30

BC1 BC2

Shared
kernel

2017-03-15

16

• Common application parts – eg. authentication

• Hard to maintain – teams must synchronize changes
in shared kernel

• Shared kernel does not change very often

Shared kernel

31

Summary

32

2017-03-15

17

• We usually need a lot of time to learn new methodologies. We must very
often change mindset

• DDD requires learning – it provides concept, rules, patterns and
processes

• DDD is best for complex subjects – it makes no sense to use DDD for
CRUD-like apps

• DDD requires domain experts to be available

Problems?

33

• Flexible model and flexible code – simplified maintenance and
development

• We can realize the client’s vision

• DDD provides ways to solve very difficult problems

• Well organized and testable code

• Business logics strictly separated

What are the pros?

34

2017-03-15

18

• Project team organization – we’ll discuss Scrum

• Design patterns – we’ll speak about that later

What else is important?

35

Questions?

36

2017-03-15

19

Krzysztof Kąkol
kkakol@pgs-soft.com

Jarosław Świniarski
jswiniarski@pgs-soft.com

www.pgs-soft.com

