
Intelligent processing of stuttered speech

Andrzej Czyzewski1, Andrzej Kaczmarek1 and Bozena Kostek1,2

1)Gdansk University of Technology, Sound & Vision Engineering Dept., Gdansk, Poland
2)Institute of Physiology & Pathology of Hearing, Warsaw, Poland

Abstract: The process of counting stuttering events could be carried out

more objectively through the automatic detection of stop-gaps, syllable

repetitions and vowel prolongations. The alternative would be based on

the subjective evaluations of speech fluency and may be dependent on a

subjective evaluation method. Meanwhile, the automatic detection of

intervocalic intervals, stop-gaps, voice onset time and vowel durations

may depend on the speaker and the rules derived for a single speaker

might be unreliable when trying to consider them as universal ones. This

implies that learning algorithms having strong generalization capabilities

could be applied to solve the problem. Nevertheless, such a system

requires vectors of parameters, which characterize the distinctive features

in a subject’s speech patterns. In addition, an appropriate selection of the

parameters and feature vectors while learning may augment the

performance of an automatic detection system.

The paper reports on automatic recognition of stuttered speech in

normal and frequency altered feedback speech. It presents several

methods of analyzing stuttered speech and describes attempts to establish

those parameters that represent stuttering event. It also reports results of

some experiments on automatic detection of speech disorder events that

were based on both rough sets and artificial neural networks.
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INTRODUCTION

Stuttering is the subject of interest of researchers from many various

domains like speech physiology & pathology, psychology, acoustics, signal analysis.

Therefore, this area is basically an interdisciplinary field of science. One of the main

problems still unsolved in the domain of speech fluency disorders is an objective and

an automatic way of judgement of patient performance before and after speech

therapy sessions and an assessment of gains made after intervention. Generally,

classification of speech disorders is considered as a very difficult and complex

problem, however some typical artifacts associated with stuttering are commonly

recognized. Stuttering is a poorly understood communication disorder with 1% global

prevalence. Analysis of stuttered speech includes (a) mean duration of sound/syllable

repetition and sound prolongation, (b) mean number of repeated units per instance

of sound/syllable and whole-word repetition, and (c) various related measures of the

frequency of all between- and within-word speech dysfluencies (Zebrowski, 1991).

Other research concludes that stuttering episodes affect the intensity-time profile of

the speech in their vicinity and that listeners can use this acoustic information to

recognize the presence and type of the stuttering (Howell and Wingfield, 1990).

Despite the fact that some researchers have several attempts to use objective

methods to evaluate patients’ progress in speech therapy (Howell, Hamilton &

Kyriacopoulos 1986; Howell & Vause 1986; Kuniszyk-Jozkowiak, 1996; Robb and

Blomgren, 1997; Howell, Au-Yeung et. al. 1997; Howell, Sacking & Glenn 1997a and

1997b; Michaelis et al., 1998; Archibald and de Nil, 1999; Howell et al., 1999), these

methods do not easily allow for automatic assessment of the severity of stuttering.

As a result, still, the most common way to do that is employing a speech therapist as

an expert to count manually dysfluencies in patient’s speech (Kalinowski et al., 1995;

Howell et al., 1998; Howell et al., 1999;). It should be mentioned that experts

employed to categorize stuttered events are usually people not only having phonetic

or linguistic training, but also could be well experienced in such tasks as speech

production and analysis (Howell et al., 1998). A panel of experts would usually be

employed, therefore reducing the level of inter-rater reliability.
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The most common way to assess dysfluency is to transcribe the recorded

speech and to locate occurrences of repetitions, syllable/word injections,

prolongation, etc. speech (Howell et al., 1998). In some research, audiovisual cues

are also used in order to better classify occurrence of stuttering. On the other hand,

good results are achieved using motor measures (Archibald and de Nil, 1999; Howell

et al., 1995). The kinematic measures that are most often examined are movements

of lips, jaw and tongue. In a study carried out by Archibald and de Nil, it was

indicated that movement of jaw is the best measure of relationships between speech

motor deficiencies and stuttering severity, allowing easy detection of differences

between fluent and stuttering speakers (Archibald and de Nil, 1999). On the other

hand, from an acoustic point of view, it is possible to analyze an electric signal

representing disordered speech. The results of such an analysis can provide

information on the process of articulation, and consequently can form the basis for

an in-depth diagnosis of the patient. Other studies have been concerned with speech

signal features (Kaczmarek and Skorka, 1997; Howell and Wingfield, 1990; Kuniszyk-

Jozkowiak, 1995, 1996). The speech segment durations measured are intervocalic

intervals, stop-gaps, voice onset time, and vowel durations. Speech envelopes have

been analyzed by Howell and Wingfield (Howell and Wingfield, 1990) resulting in

some parameters that were later used in an automatic search for lexical dysfluency

(Howell et al., 1998). Recently, Kuniszyk-Jozkowiak compared areas under the

speech envelopes of utterances of fluent and stuttering speakers (Kuniszyk-

Jozkowiak, 1996).  

In order to assist in therapy for stutterers, electronic devices have been

designed and constructed based on auditory feedback. The most often used therapy

of this type is Delayed Auditory Feedback (DAF) (Lee, 1950). The effects of using

DAF have been studied thoroughly in many research institutes worldwide, and can

be briefly described as a simultaneous reduction of stuttering and slowing down of

speech (Kuniszyk-Jozkowiak, 1995; Lee, 1950; Kalinowski et al., 1995).

Among more recent devices of this type is one based on a signal processor

called a DSA (Digital Speech Aid) (Czyzewski et al., 1993; Czyzewski et al., 1994;

Roland-Mieszkowski et al., 1995). One of the algorithms used in this device is signal

transposition in the spectrum domain (FAF – Frequency Altered Feedback). For many
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patients, this method has shown a high reduction of stuttering, especially in the case

of text reading (Howell 1987, Czyzewski and Skorka, 1996). The small digital speech

aid (see Fig. 18) was exploited in those experiments (Roland-Mieszkowski, Czyzewski

& Kostek 1995 ). The research was designed to test various algorithms and measure

their effectiveness. Stutterers’ speech was therefre recorded and analyzed in detail.

Consequently, changes in the vocal pitch in disordered speech before and after

therapy were observed (Howell and Williams 1988 & 1992, Kaczmarek and Skorka,

1997). It was found that the frequency of the vocal tone of speech corrected using

the FAF method is lower than before the correction. The difference of frequency

ranges from about 5 to 10%. Furthermore, speech corrected in this way does not

give the impression of being slowed down. Additional acoustic analyses were also

performed in order to look for other significant changes in disordered speech

features. The results provided the impetus to conduct studies on the possibility of

automatic detection of speech dysfluencies by the computer as a possible diagnostic

tool.

So far, however, studies on the vocal pitch (also called formant F0) and on

higher formants have been but a fraction of speech disorders research (Howell &

Williams, 1992; Czyzewski and Skorka, 1996; Kaczmarek and Skorka, 1997; Robb and

Blomgren, 1997). For this reason, they still have not been used diagnostically in

speech pathology and therapy. It seems, though, that vocal pitch and higher

formants make up an important element of  objective studies on speech in which

stuttering occurred. They can provide information on the articulation mechanisms

present in stuttering, which so far have only been researched using other methods.

The fact is that in stuttered speech, contractions of articulation muscles

cause changes in the speech articulation system that are visible in the results of

spectral and cepstral analysis. These observations were used as a basis for the

concept of analysis of stuttered speech presented here. The analysis performs

segmentation of the speech signal and parametrization of the segments obtained.

The parameters are constituted by the frequency of the vocal tone and the

frequencies and amplitudes of the formants. Feature vectors containing sequences of

parameter values were then subjected to correlation analysis and then used a

training material for some intelligent algorithms as rough sets and neural networks.
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As a result of the correlation analysis, one can obtain information about the

behavior of formants based on the spectrum of the signal of stuttered speech signal,

in addition to information about the mutual relations between the sequences of

parameters obtained in the course of defective articulation. These relations can be

expressed in the form of a correlation matrix and a matrix of coefficients of t-Student

statistics, which indicate the significance of the obtained values of correlation

coefficients. The relationships obtained in this way provide characteristics of the

particular cases of speech disorders, and after some generalization over the whole

researched population they can be used for further analyses that facilitate diagnosis

in the case of speech dysfluency. In turn, the application of intelligent algorithms

allows for the automatic detection of stuttering artifacts.

Also presented in the paper is an example of an analysis of frequency altered

feedback speech obtained using the DSA electronic speech corrector (Czyzewski et

al., 1993; Czyzewski et al., 1994).

I. METHODOLOGY OF ANALYSIS OF VOCAL TONE IN STUTTERED SPEECH

The presence of vocal tone is a substantial feature of voiced sounds of

speech. This tone determines the excitation of the vocal tract. The voicing is caused

by vocal cord vibrations. The shape of the vocal tract determines the resonances in

it, and consequently the timbre of the resulting sound. Moreover, changes of its

shape are determined by articulation. The vocal pitch constitutes the pitch of the

speech signal. In stuttered speech, there are spontaneous, sometimes periodic

muscle cramps, causing blocking or other disturbances of speech. This may be easily

observed by analyzing the speech signal only in the time domain  in order to get

some data for statistical analysis (Kuniszyk-Jozkowiak, 1996; Robb and Blomgren,

1997). Analysis of the stuttered speech signal may also be useful for assessing

different types of stuttered speech correction systems. In this case, analysis in the

frequency domain is recommended. Cepstral analysis and cepstral smoothing may be

applied to detect vowels, and assist in the study of such speech disorders that

contain a syllable or vowel repetition and vowel prolongation. The analysis of the
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vocal tone in dysfluent speech is recommended especially with regard to estimating

its quantitative changes.

Investigation of the changes in pitch of the vocal pitch was based on a

modified cepstral analysis, which consists of the following steps:

1.  compression of the dynamics of the spectrum,

2.  reduction of the spectrum band for cepstral analysis,

3.  estimation of the frequency of the vocal tone.

These modifications lead to a better discernibility of the cepstral maximum that is the

consequence of the presence of vocal pitch in the analyzed speech.

Compression of the dynamics of the spectrum is made by imposing an

envelope on maxima and minima of the spectrum according to the following

formulae proposed by the authors:
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where:

Gi - values of the upper envelope,

Di - values of the lower envelope,

Ai - values of the spectrum logarithm,

i - numbers of spectrum coefficients (i = 0, 1, 2 etc.)

rf – frequency analysis resolution

cf – spectral components integration constant (rf/cf
  ratio was set to –1/10)

The obtained Gi and Di are later used to normalize the spectrum according to

the formula:
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where:

Amax - maximum of the spectrum logarithm,

Amin - minimum of the spectrum logarithm.

An example showing the effects of these operations is presented in Figs. 1-4.

Calculating the cepstrum is the next step. The results may be presented as plots, for

example such as those shown in Figs. 5 and 6 which show the difference between

both cepstral analyses in the normalization process. The cosine transform was used

for these analyses.

The vocal tone frequency is estimated as a center of gravity of a fragment of

the calculated cepstrum:
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where:

$f  - estimated frequency,

rc  - resolution of cepstral analysis,

Wi  - cepstrum coefficient number i,

m, n - numbers of the cepstral coefficient which contain the maximum

related to the vocal pitch.

In this work, an assumption was made that m=k-1 and n=k+1, where k is

the number of the maximum cepstral coefficient. Using the sequence of values

calculated from the successive frames of the speech signal, one can obtain results

showing the evolution of the estimated frequency. An example of such an operation

is shown in Fig. 7.

Besides the vocal tone a vital part of stuttered speech analysis is formant

tracking procedure which is described in the next paragraph.
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II. METHODOLOGY OF ANALYSES OF FORMANTS IN STUTTERED SPEECH

For the formant analysis monophonic digital recordings, with a 16-bit

resolution at the sampling frequency 22.05 kHz, were used in the experiments. The

analyzed signal was pre-emphasized with 6 dB/octave without the compression of

spectrum dynamics. Computation of the formants was made using the cepstral

method of spectrum smoothing based on Cosine Transform. The following

parameters were used:

• length of frame equals 1024 samples,

• length of overlap equals 583 (the step of analysis is therefore 441

samples that corresponds to 20 ms signal portion),

• frequency band used to smooth the cepstrum = 5512.5 Hz (256 samples

of spectrum module coefficients),  

• Hamming’s window,

• smoothing order in the cosine transform was set as equal to 12.

The frequencies of the particular formants were computed by interpolating

second order polynomials for a cepstral smoothed spectrum. This method searches

for local maxima of the smoothed spectrum and computes the value on the

frequency axis for which the interpolated function reaches maximum. This method is

illustrated in Fig. 8.

The general formula for xmax is derived from the square function, with the

assumption that for x=k, the measurement data reach a local maximum. Therefore,

using a shift to the left in the coordinate system one can express k as:
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where:

a b, – coefficients at x2  and x  of the polynomial  

y(k) – cepstral smoothed spectral components  
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Due to the shift of the system and considering the resolution of the spectral

analysis, one can finally express the formula for the frequency of the analyzed

formant:
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It needs to be stressed that the stuttered speech cases of prolonged speech

signals are best suited for the evolutionary analysis of the shape of the vocal tract.

This is due to the fact that in these cases one is dealing with a relatively long section

of time during which the examined parameters change relatively slowly, in turn

allowing for easier objective measurements of their evolution. This is the reason why

these particular utterances were selected for the purpose of the carried out study.

As a result of experiments, a database was obtained which contained sets of

vectors of dysfluent speech parameters, including parameters of excitation, such as

the frequency of the vocal tone and frequencies and amplitudes of the particular

formants that represent the vocal tract structure. Each of the vectors consists of 7

parameters, with the particular elements of each vector as follows:

1. frequency of the vocal tone,

2. amplitude of the first formant,

3. frequency of the first formant,

4. amplitude of the second formant,

5. frequency of the second formant,

6. amplitude of the third formant,

7. frequency of the third formant.

An example of an analysis result, presented graphically, for a stuttered

utterance of the “vowel prolongation” type is shown in Fig. 9, and the time sequence

of the frequencies of the vocal tone and the frequencies of the first formant are

shown in Fig. 10. As is seen from these figures, formant frequencies of the vowel

are not stable during its prolongation revealing easily discernible pitch modulation

effects.
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III. SIGNAL ANALYSIS OF “VOWEL PROLONGATION” AND “VOWEL

REPETITION” TYPE CASES

Vovel prolongation is one of the many features that characterizes stuttered

speech. Due to the relatively long duration of voiced vowel articulation, prolonged

utterances are easier to analyze in an evolutionary way in this case using cepstral

analysis. The result is a sequence of cepstral analysis coefficients which are

characterized by a distinct maximum for higher cepstral coefficients, which are

characterized using the fundamental frequency, i.e. the frequency of the vocal tone.

Examples of results of such analysis are shown graphically in Fig. 11.

Cases of “vowel repetition” or “syllable repetition” are more difficult to

analyze than the above stated cases of vowel prolongation. This is due mainly to the

fact that the duration of their articulation is much shorter, and for this reason the

amount of information obtained from the analysis of single recordings of these

speech disorders is much smaller. However, this problem is worth solving because of

their frequency of occurrence which is significantly larger than of “vowel

prolongation” cases in speech disorders related to stuttering. Consequently, using a

longer sequence of analyses, one can obtain results that provide speech profile of

the patients, which will support diagnosis and therapy. An example of the analysis of

a typical case of syllable repetition in terms of the pitch of the vocal tone is shown in

Fig. 12.

In addition, a thorough examination of the frequency of the vocal tone and

the frequencies and amplitudes of the particular formants was made. Single

repetitions were characterized by a single vector of parameters according to the

concept presented above. An example of a result of such analysis for a speech

disorder of the “repetition” type is shown graphically in Fig. 13 (see also Table III in

the paragraph 7). For the purpose of comparison, Fig. 14 also shows the result of

the analysis of a word uttered using the DSA electronic speech corrector. The

algorithm exploited was, Frequency Altered Feedback (FAF), providing spectral

transposition of signals in the frequency domain by a reduction of 1/4 of an octave

(Czyzewski et al., 1993).
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IV. CORRELATION ANALYSIS

Analyses of speech with the “prolongation” type of disorder allow a

quantitative formulation of particular utterances in terms of the degree of correlation

between the obtained parameters and the actual performance of articulation

muscles, which directly affect the speech signal. In stuttered speech, one can

observe oscillations of formant parameters both in amplitudes and frequencies, and

sometimes even the disappearance of formants (as illustrated in Figs. 13 and 14).

Moreover, additional formants frequently become present in frequency ranges that

are not related to the uttered vowel. Despite these disturbances, one can perform

correlation analysis for parameters related to this type of speech disorder, obtaining

a matrix of the correlation which includes normalized correlation coefficients for all

parameters of the analyzed database. The normalized correlation coefficients were

computed using the formula:
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where:

n  - number of vectors of parameters,

P , Q  - arithmetic means for parameters Pk  and Qk , k=1..n .

On the basis of the formula (7) coefficients of correlation matrices were

calculated. To prove the significance of the obtained correlation, t-Student

distribution coefficients were additionally computed at n-2 degrees of freedom

according to the formula:
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Examples of such an analysis, which illustrate the relation between

correlated parameters of stuttered speech (the case of vowel “prolongation” for

which cepstrally smoothed spectrum was presented in Fig. 9) are shown in Fig. 15.

The largest value of the correlation coefficient is equal to - 0.800 and the value of

the coefficient computed using formula (8) is equal to -6.391, thus it signifies strong

correlation.

V. COMPARISON OF FORMANTS FOR STUTTERED AND CORRECTED SPEECH

Parameters similar to those discussed above may also be computed for

speech disorders of the “vowel repetition” or “syllable repetition” type. For purposes

of comparison, similar analyses were made for corrected speech using two different

methods of speech signal modification in the auditory feedback loop – DAF (Delayed

Auditory Feedback) and FAF (Frequency Altered Feedback).

The purpose of the studies was to determine the type and size of the effects

introduced by the speech corrector on the formants in the vowel spectrum, which is

the consequence of the way speech is articulated. The results of the presented

studies may be a contribution to an automatic diagnosis of speech dysfluency.

Stutterers are a heterogenous population, and therefore present with

different speech profiles. For example among stutterers are so called clonic and tonic

cases. Clonic (oscillatory) stuttering is usually related to speech elements repetitions

and tonic (stationary) stuttering with prolongations. The subjects employed in testing

represented both types of stuttering with medium intensity.  

In speech disorders, one can observe oscillations of formant parameters in

terms of amplitudes and frequencies. In fluent speech, on the other hand, (within

syllables) these oscillations are much smaller (refer to Figs. 16 and 17). Moreover, in

stuttered speech additional formants frequently become present in frequency ranges

that are not typical for the uttered vowel (compare Figs. 16 a-e and Figs. 17 a-h).

One can also observe the fading of formants typical for a given vowel. Naturally, this

is the effect of an uncontrolled block of articulation muscles, which affects the shape
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of the vocal tract. The result is that the articulated speech is usually not very

comprehensible. In some situations, one can even hear a vowel that is clearly

different from the one that was supposed to be uttered. It needs to be noted,

however, that the formants distribution in speech is an individual feature and may be

used to identify speakers.

The above observations illustrate the scope of interpretation problems that

come up when attempting to draw generalized conclusions. Examples of results from

the above analyses for speech correction of the FAF type are shown in Fig. 16, and

of the DAF type in Fig. 17. The settings on the DSA speech corrector were as

follows: time delay ranged from 50 to 100 ms for the DAF type of feedback, and

spectrum shift was set to 1/4 of an octave downwards for the FAF type of feedback.

VI. AUTOMATIC DETECTION OF STUTTERING ARTEFACTS

The automatic classification of data needs some preprocessing stages, such

as parametrization and discretization. The first of these was already described in

previous paragraphs. This procedure is aimed at reducing the amount of data

associated with digital sound samples, and it results in feature vectors. Parameters

obtained as a result of this process can directly feed the inputs of classification

systems, such as artificial neural nets, even if they consist of real numbers. However,

other classification algorithms which are based on rules (i.e. rough set-based

classifiers) demand the discretization at the data preprocessing stage. During the

learning phase, a number of rules are produced, on the basis of which the testing

phase is then performed. The generated rules are of the following form:

    (param_1)=(value_1) and...and (param_k)=(value_k) => (class_i)                 (9)   

The produced rules contain parameter values and their number should be reasonably

limited. Meanwhile, the number of rules generated on the basis of real valued

parameters will be very large and may contain very specific values. For this reason,

the discretization (quantization) process is needed (for further details on quantization

see Appendix).



14

A number of experiments related to automatic detection of speech disorders

have been carried out. For this purpose, two learning algorithms were employed.

The rough sets based algorithm was prepared and exploited at the TU of Gdansk

(Czyzewski, 1996; Kostek, 1999).  The idea of rough set was introduced in early 80s

by Pawlak. From that time, the notion of rough set has been exploited in many

domains and provided an effective tool for extracting knowledge from databases.

(Pawlak, 1982; Slowinski, 1992; Polkowski and Skowron, 1998). Some principles of

the rough set theory and on discretization processes are presented in Appendix.

Additionally, for comparative purposes, neural networks were applied to automatic

detection of stop-gaps. In all cases, leave-one-out tests were carried out in order to

check the effectiveness of tested systems. Exemplary experiment results are

presented below.

A.  Automatic detection of stops-gaps

Sound files were chosen which contained fluent and disordered speech

patterns (with stop-gaps). The sampling frequency was 22.05 kHz and the length

was equal to 25 000 samples (1.13 s of duration). There were six examples of fluent

speech and six ones of speech with stop-gaps. Thus, the patterns belonged to two

classes: FLUENT_SPEECH and STOP_GAP. The examples were taken from both clonic

and tonic medium-intensity stutterers’ utterances. The recordings were divided into

segments of the size of 5 000 samples (0.22s) or of 2 500 samples (0.11s). Next,

parametrization took place and evaluated parameters were stored in one of two

pattern sets: Detection of stop-gaps (5) with 5-position vectors or Detection of stop-

gaps (10) with 10-position vectors, respectively. Both files included 12 vectors.

During experiments, various settings of the implemented rough set system were

used, the range of quantization (see Appendix) from 2 to 10 was tested.

B.  Discerning vowel prolongations

The algorithm was based on the selection of parameters describing vowels.

Sound files containing individual vowels from various speakers were prepared for the



15

analysis. The length of the files was equal to 1024 samples and the sampling

frequency was 22.05 kHz. Two different pattern sets were prepared. The first one

(Discerning vowel prolongations (1)) included patterns for six Polish vowels edited

from a medium-intensive tonic stutterer voice. There were six examples of utterance

for each vowel which resulted in 36 feature vectors constituted with 6-parameters.

The second pattern set (Discerning vowel prolongations (6)) was composed of

parameters for five Polish vowels taken twice from six different clonic speakers’

utterances. Thus, the set consisted of 60 vectors constituted with six parameters.

C. Detection of syllable repetitions

In the case of syllable repetitions, sound files were of the length of 25000

samples and the sampling frequency was equal to 22.05 kHz. The recordings

belonged to two classes: FLUENT_SPEECH and REPETITION. The 10 examples for

the class REPETITION were edited from two medium-intensive clonic stutterers’

voices. In turn voices and 10 examples for the class FLUENT_SPEECH were obtained

from two speakers. Hence, the pattern set (called Detection of syllable repetitions)

contained 20 vectors. During the tests, rough set system settings were selected as

follows: the value of quantization was from the range of 5 to 20 and the value of

neutral point was from 0.6 to 0.9 (see Appendix).

D. Application of rough sets to recognition tasks

Table I contains data concerning decision rules generated by the rough set

system. The following abbreviations and symbols were used:

q – number of quantization intervals,

Lmax - maximum rule length,

µRSmin - minimum rough-measure,

nµ - neutral point,

C/I/D - number of correctly classified vectors/number of incorrectly classified

vectors/ number  of vectors without decision,

[%] - percentage ratio of correct decisions.
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TABLE I. Results of automatic detection of some stuttering events by rough sets.

Parameters Best result Certain rules

Pattern set q Lmax µRSmin nµ C/I/D [%] C/I/D [%]

Detection of stop-gaps (5) 2 2 0.50 0.60 10/2/0 83.33 8/2/2 66.67

Detection of stop-gaps (10) 6 2 0.50 0.60 11/1/0 91.67 11/1/0 91.67

Discerning vowel

prolongations (1)

7 6 0.50 0.60 35/1/0 97.22 35/1/0 97.22

Discerning vowel

prolongations (6)

6 2 0.50 0.60 58/2/0 96.67 56/2/2 93.33

Detection of syllable

repetitions

7 2 0.55 0.85 18/2/0 90.00 13/6/1 65.00

As is seen from Table 1, the recognition scores depend on the system

settings. This is especially visible in the case of stop-gaps detection. When the

number of quantization intervals was small, then the recognition scores were much

smaller than in the case of division into 6 intervals. The division into two intervals

apparently does not ensure the appropriate description of the data. Scores in the

remaining cases are greater than 90%.

E. Application of  neural networks to recognition tasks

Parameters related to stop-gaps disorder were also fed to a neural net.

These parameters were obtained from pattern sets: Detection of stop-gaps (5) and

Detection of stop-gaps (10). The structure of feedforward neural network with one

hidden layer was chosen. The number of neurons in the input layer depends on the

type of the set of parameters (5 or 10) and the size of the output layer equals two

neural units (2 classes). The net was trained by the error backpropagation method.

In all experiments, the unipolar function was set as the neuron activation function.

For each set of patterns, two structures of the network were chosen. In the

first case, the number of neurons in the hidden layer was arbitrarily set to 5 and in

the second one, the number of hidden neurons was equal to 10. To check the



17

networks performance, the leave-one-out method was applied. For statistical

purposes, each neural net for every set was trained and tested 5 times.

The training parameters for different types of networks are grouped and

presented in Table II, as well as results of recognition tests. The values refer to

correct responses of the network. To denote a structure of a neural net, the

following convention was used: No. of_input_neurons / No._of_hidden_neurons /

No. of_output_neurons.

The following abbreviations and symbols are used:

C/I - number of correctly classified vectors/number of incorrectly classified vectors

[%] - percentage ratio of correct decisions.

TABLE II. Training parameters and results of recognition tests for different structures

of neural net.

Training parameters Results

Network

structure

Learning ratio

( η)

Momentum ratio

( α)

Emax C/I [%]

5/5/2 0.5 0.3 0.01 45/15 76.3

5/10/2 0.5 0.3 0.01 45/15 78.1

10/5/2 0.6 0.4 0.01 42/18 71.21

10/10/2 0.6 0.4 0.01 40/20 67.37

As seen from Table II, in the case of neural networks applied to the task of

recognition of artifacts of stuttering events in the speech samples, obtained average

scores were equal to 73,25%. This implies that the rough set-based algorithm

performance was better while recognizing stuttering events in speech signal.

7. RESULTS

Since  certain characteristics of the studied cases can be meaningful for the

diagnosis of speech disorders, thus the results of the proposed analyses can be

useful for the evaluation of the algorithms used in speech therapy. The presented
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results provide individual examples from a series of analyses made by the authors.

They are typical for the analyzed cases, and allow some conclusions to be

formulated:

1. In the studied cases of vowel prolongation, one can observe variations of

formant frequencies within a single articulation. These variations go up and

down the frequency scale and constitute a sort of pseudo-periodical

frequency modulation with an ascending deviation. As this deviation has an

ascending tendency especially at the end of an articulation, the frequency of

the vocal tone is always higher than it was at the beginning;

2. In cases of shorter periods of time of vowel prolongation, the number of

oscillations of frequencies is smaller, and can even reach the value of 1;

3. The value of the mean frequency deviation seems to be an individual

feature;

4. For the purposes of enriching the parametrization suitable to the

representation of this type of disorder, one should express the value of the

deviation quantitatively;

5. A similar character (ascending) is shown in the behavior of frequencies of

the vocal tone for speech disorders related to repetitions. The value of this

change seems to be an individual feature, similar to the cases of vowel

prolongation;

6. The described values also depend on the type of vowel in question;

7. For various patients, different correlation levels were observed between the

frequency of the vocal tone and formant parameters. However, when the

correlation was significant, the coefficient was always negative. For example,

this means that as the vocal tone frequency rose, the frequency or amplitude

of formants was declining;
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8. Many cases of disorders of the “prolongation” type are characterized by

strong oscillations of the amplitude of some of the formants, sometimes

bringing about momentary fading. At the same time, additional formants

may appear in frequency ranges that are not related to the spectrum of the

uttered vowel. This is the natural effect of a block of the articulation muscles

that affects the shape of the vocal tract. Resulting speech is almost

incomprehensible;

9. For speech disorders of the “repetition” type, the above effects are present

in greater intensity. This is understandable because speech signal in this

case is characterized by faster changes and greater dynamics;

10. Despite the speech correction spectrum, formants of the analyzed vowel

usually do not fit into the ranges recognized as typical for the given vowel;

11. Formants of disordered speech show fading with oscillations in the frequency

domain. These oscillations occur around a mean frequency the value of

which is usually far from the frequency occurring after electronic speech

correction and are from the range of frequencies typical for the given

formant;

12. The description and behavior of formants in disordered speech can be

presented in the form of table (TABLE III) (using the example presented

before in Fig. 13 – disordered speech; repetition of the “a” vowel):
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TABLE III. Behavior of formants in disordered speech.

analyzed sound F1 [kHz] F2 [kHz] F3 [kHz]

repetition 1 1.09 none 2.6

repetition 2 none 1.33 2.63

repetition 3 1.01 none 2.74

repetition 4 0.66 1.46 3.35

speech after FAF

correction
0.75 1.32 2.60

mean frequency

ranges
0.7 - 0.9 1.4 - 1.75 2.15 - 2.45

The last row in the Table 3 includes values related to the fluent speech

patterns of the same speaker.

13. The above observations lead to some possibilities of using this type of

research for purposes of diagnosis. The possibility of determining the degree

of correction of the formant frequency can be represented by the variance:

r f fn sr= − (10)

where:

fn  - value of formant frequencies after correction,

f sr  - mean value of formant frequencies of disordered speech;

14. Due to high oscillations of the values of formant frequencies, it seems that

for the purpose of working on this type of data it is advisable to use

algorithms based on learning algorithms.

15. For a complete description of formant behavior, one needs to add the mutual

relations between the amplitudes (levels) of the particular formants.

16. When comparing the results of experiments designed to detect stuttering
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events, better scores were obtained using rough set-based system than the one

based on artificial neural networks. The obtained results were dependent upon the

chosen representation of speech patterns and settings of the system.

8. CONCLUSIONS

Three most characteristic speech disorders related to stuttering were

analyzed in this paper. They can be automatically discerned in continuous speech,

however each type required a different approach in the detection procedures. The

common point of all proposed methods is the application of learning algorithms

based on rough sets or on neural networks. Results obtained suggest that it would

be possible to automatically discern and to count most stuttered speech events in

order to perform objective studies of the effectiveness of electronic speech

correctors. The signal analyses of stuttered speech assisted by intelligent algorithms

can bring valuable information concerning speech disorder and they provide also

means of assessing the effectiveness of electronic speech aids.
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Appendix.  Basic notions of the rough set theory

The rough set theory and its basic concepts were proposed by Pawlak in the

early 80's (Pawlak, 1982). Since then, this theory has been introduced to different

domains of science, including the domain of audio acoustics (Czyzewski, 1996;

Kostek, 1999). The rough set concept is a new mathematical tool to reason about

imperfect knowledge. Rough set theory is based on the assumption that elements

that exhibit the same information are indiscernible and form blocks that can be

understood as elementary granules of knowledge. These granules are called

elementary sets. Any union of elementary sets is called a crisp set. Due to the

granularity of knowledge, rough sets cannot be defined finally by available

knowledge. That is why with every rough set we associate two crisp sets, called its

lower and its upper approximation.

The  universe U, defined as a collection of objects stands at the top of the

rough set hierarchy. On the other hand, a basic entity is placed at the bottom of this

hierarchy. Between them, the approximation space AS is defined. Several important

concepts are connected with such notions as an upper approximation R S( ), a lower

approximation R S( ) , and a boundary region BR. Intuitively, the lower approximation

of a set consists of all elements that surely belong to the set, whereas the upper

approximation of the set constitutes of all elements that possibly belong to the set.

The boundary region is the difference of the upper and the lower approximation. It

consists of all elements that cannot be classified uniquely to the set or its

complement, by employing available knowledge. The concept set is a subset of the

entire set of elements representing knowledge, so that this subset contains only

elements fulfilling the desired relation.

Consequently, the rough set approximates a given concept from below and

from above, using both lower and upper approximations. It means that a set in this

theory is not defined straightforwardly but it is defined in terms of its lower and its

upper approximations. Thus, a standard set S can be approximated in approximation

space AS by the pair R S R S( ), ( ) , called the rough set (see Fig. A1).
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Upper
Approximation

Lower ApproximationBoundaryRegion 

 

Fig. A1. Basic structure of rough sets

Three other properties of rough sets defined in terms of attribute values are:

dependencies, reduct and core (Pawlak, 1982).

An inductive learning system based on a rough set theory consists of a

learning component for the automatic rule derivation from training samples and of

an inference system used for decision-making at the recognition stage. Rules are in

the following format:

 if <condition1>and<condition2>...and<condition n> then <decision>        (A1)     

Conditions are based on attributes. Attributes should be equal to concrete

values or should belong to certain ranges. The decision always uses a single rule

matching approach. There are two kinds of rules, certain and uncertain (possible)

ones. The certain rules are derived from the lower approximation of the concept set

and the possible rules are derived from the upper approximation of the concept set.

The knowledge base in the rough set method can be conveniently

represented in the form of a decision table, in which rows represent objects and

columns represent attributes. In the last column decision attributes are collected.

An important parameter of rules, reflecting their quality is the rough measure

�RS, defined as follows:

µRS
X Y
Y

=
∩

                                                        (A2)
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where: X is the set determined by the given concept (concept set) and Y is the set of

all examples described by the rule. The rough measure of certain rules is always

equal to 1, whereas the rough measure of possible rules fulfills the term: 0<µRS<1.

An additional parameter is defined which allows one to optimize the rule

generation process. This parameter was called the rule strength r and is defined as

follows:

r c nRS= −( )µ µ                                                    (A3)

where: c - number of cases conforming to the rule,  and nµ - the neutral point of the

rough measure is one of several parameters of the rule generation system to be set

by its operator. This parameter allows one to regulate the effect of possible

(uncertain) rules on the process of decision making.

The knowledge base represented by rules in the rough set system allows one

to control the processes burdened with vagueness. More details concerning the

rough set concepts are documented elswhere (Pawlak 1982; Slowinski, 1992).

Discretization

The discretization process can be performed in two ways, using quantization and

clusterization methods:

 the parameter domain can be divided into subintervals and each parameter value

belonging to the same subinterval will take the same value (quantization process);

- parameter values can be clustered together into a few groups, forming intervals,

and each

    group of values will be considered as one value (clusterization process).

Various attempts have been made in computing practice to process real-

value data with several methods classified as global and local. The discretization

methods are considered global if they are applied to the entire set of parameter

values. On the other hand, some methods are limited to one parameter domain.

Several discretization schemes were reviewed by Kostek (1999) among them: Equal
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Interval Width Method, Equal Frequency per Interval Method, Minimal Class Entropy

Method, Hierarchical Cluster Analysis, etc.

Generally speaking, The quantization process can be performed using

various algorithmic approaches. The division of the parameter domain into

subintervals is defined as follows:

Let A be a real value parameter and let the interval [a, b] be its domain. The division

∏A on [a, b] is defined as the set of k subintervals:

]}a,a[),...,a,a[),a,a{[ kkA 12110 −=∏ (A4)

where: ,aa,aa ii <= −10  ,k,...,i 1=  bak =

This approach to quantization is based on calculating division points ai. After

quantization, the parameter value is transformed into the number of the subinterval

to which this value belongs.
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FIGURE CAPTIONS

FIG. 1. Graphical presentation of the logarithm of the spectrum for a fragment of

disordered speech – Polish vowel “o“ before normalization.

FIG. 2. Graphical presentation of the upper envelope of the spectrum shown in

           Fig. 1.

FIG. 3. Graphical presentation of the lower envelope of the spectrum shown in Fig.

1.

FIG. 4. Graphical presentation of the logarithm of the spectrum for a fragment of

disordered speech – Polish vowel “o” after normalization.

FIG. 5. Graphical presentation of the cepstrum for a fragment of disordered speech –

Polish vowel “o” before normalization.

FIG. 6. Graphical presentation of the cepstrum for a fragment of disordered speech –

Polish vowel “o” after normalization.

FIG. 7. Graphical presentation of the evolution of the vocal tone frequency for a

fragment of disordered speech – Polish vowel “o” (vowel prolongation case). The

cepstrum was calculated on the basis of the Cosine Transform.

FIG. 8. Graphical presentation of the method of square interpolation for the formant

estimation.

FIG. 9. Graphical presentation of the evolution of formants for a fragment of

stuttered speech which contains prolongation – Polish vowel “a”. The diagram

presents the relation: spectral amplitude - time -frequency.

FIG. 10. Graphical presentation of the results of disordered speech signal analysis –

Polish vowel “a” (vowel prolongation case). The diagram presents changes of the

vocal tone frequency F0 (above) versus time and changes of the frequency of

formant F1 (below).

FIG. 11. Graphical presentation of results of analysis of disordered speech - Polish

vowel “i” (vowel prolongation case):

a. time-domain plot;  b. evolution of cepstrum characteristics;  c. changes of vocal

tone frequency.

FIG. 12. Graphical presentation of the results of disordered speech analysis – Polish

syllable “ba” (repetition case - syllable pronounced twice):
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a. time-domain plot;  b. evolution of cepstrum characteristics; c. changes of vocal

tone frequency.

FIG. 13. Graphical presentation of formant parameter changes for disordered speech

– Polish vowel “a” (vowel repetition case). Cepstrally smoothed spectra are shown.

Left: first repetition; Right: second repetition. Vocal tone frequency and formant

frequencies are listed – see also Table III.

FIG. 14. Graphical presentation of formant parameter changes for corrected speech

using the DSA – Polish word “zamieηila”. Cepstrally smoothed spectra are shown.

Left: first vowel “a”; Right: second vowel “a”. Vocal tone frequency and formant

frequencies are listed.

FIG. 15. Graphical presentation of the relation between the vocal tone frequency

(axis x) and formant F1 frequency (axis y) of disordered speech – Polish vowel “a”

(vowel prolongation case). The correlation coefficient is negative in this case.

FIG. 16. Graphical presentation of cepstrally smoothed spectra for disordered speech

– Polish vowel “a” (vowel repetition case). Formant levels in [dB] and frequencies of

formants in [kHz] are listed:

(a) first repetition;  (b) second repetition; (c) third repetition; (d) fourth repetition;

(e) electronically corrected vowel “a” (with FAF method).

FIG. 17. Graphical presentation of cepstrally smoothed spectra for disordered speech

– Polish vowel “a” (vowel repetition case). Formant levels in [dB] and frequencies in

[kHz] are listed

(a) first repetition; (b) second repetition; (c) third repetition; (d) fourth repetition;

(e) fifth repetition; (f) sixth repetition; (g) seventh repetition; (e) electronically

corrected vowel “a” (with DAF method).

FIG. 18. Digital speech aid – the device introduced by Czyzewski & Roland-

Mieszkowski
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FIG. 1. Graphical presentation of the logarithm of the spectrum for a fragment of

disordered speech – Polish vowel “o“ before normalization.

FIG. 2. Graphical presentation of the upper envelope of the spectrum shown in Fig.

1.
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FIG. 3. Graphical presentation of the lower envelope of the spectrum shown in Fig.

1.

FIG. 4. Graphical presentation of the logarithm of the spectrum for a fragment of

disordered speech – Polish vowel “o” after normalization.
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FIG. 5. Graphical presentation of the cepstrum for a fragment of disordered speech –

Polish vowel “o” before normalization.

FIG. 6. Graphical presentation of the cepstrum for a fragment of disordered speech –

Polish vowel “o” after normalization.
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FIG. 7. Graphical presentation of the evolution of the vocal tone frequency for a

fragment of disordered speech – Polish vowel “o” (vowel prolongation case). The

cepstrum was calculated on the basis of the Cosine Transform.

FIG. 8. Graphical presentation of the method of square interpolation for the formant

estimation.
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FIG. 9. Graphical presentation of the evolution of formants for a fragment of

stuttered speech which contains prolongation – Polish vowel “a”. The diagram

presents the relation: spectral amplitude - time -frequency.
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FIG. 10. Graphical presentation of the results of disordered speech signal analysis –

Polish vowel “a” (vowel prolongation case). The diagram presents changes of the

vocal tone frequency F0 (above) versus time and changes of the frequency of

formant F1 (below).
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a.

b.

c.

FIG. 11. Graphical presentation of results of analysis of disordered speech - Polish

vowel “i” (vowel prolongation case):
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a. time-domain plot;  b. evolution of cepstrum characteristics;  c. changes of vocal

tone frequency.

a.

b.

c.

FIG. 12. Graphical presentation of the results of disordered speech analysis – Polish

syllable “ba” (repetition case - syllable pronounced twice):
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a. time-domain plot;  b. evolution of cepstrum characteristics; c. changes of vocal

tone frequency
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FIG. 13. Graphical presentation of formant parameter changes for disordered speech

– Polish vowel “a” (vowel repetition case). Cepstrally smoothed spectra are shown.

Left: first repetition; Right: second repetition. Vocal tone frequency and formant

frequencies are listed – see also Table III.
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FIG. 14. Graphical presentation of formant parameter changes for corrected speech

using the DSA – Polish word “zamieηila”. Cepstrally smoothed spectra are shown.

Left: first vowel “a”; Right: second vowel “a”. Vocal tone frequency and formant

frequencies are listed.

FIG. 15. Relation between the vocal tone frequency F0 and formant frequency F1 of

disordered speech – Polish vowel “a” (vowel prolongation case). The correlation

coefficient is negative in this case and equals -6.391.
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(a)

L1 = 1.867490 F1 = 1.094157 kHz L2 = 0.570181 F2 = 2.595860 kHz
L3 = -0.381293 F3 = 3.901403 kHz

(b)

L1 = 2.378656 F1 = 1.333182 kHz L2 = 0.207837 F2 = 2.633388 kHz
L3 = -1.074840 F3 = 4.073639 kHz
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(c)

L1 = 2.073406 F1 = 1.018925 kHz L2 = 0.278272 F2 = 2.746737 kHz
L3 = -0.598770 F3 = 3.849827 kHz

(d)

L1 = 1.624132 F1 = 0.662184 kHz L2 = 1.630457 F2 = 1.462814 kHz
L3 = -0.070226 F3 = 3.352183 kHz L4 = -0.935523 F4 = 4.990126 kHz
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(e)

L1 = 1.853511 F1 = 0.754539 kHz L2 = 1.866170 F2 = 1.326586 kHz
L3 = 0.695308 F3 = 2.603917 kHz L4 = -0.038948 F4 = 3.945079 kHz

FIG. 16. Graphical presentation of cepstrally smoothed spectra for disordered speech

– Polish vowel “a” (vowel repetition case). Formant levels in [dB] and frequencies of

formants in [kHz] are listed:

(a) first repetition;  (b) second repetition; (c) third repetition; (d) fourth repetition;

(e) electronically corrected vowel “a” (with FAF method).
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(a)

L1 = 2.073615 F1 = 0.547536 kHz L2 = 1.420132 F2 = 1.499503 kHz
L3 = 0.849996 F3 = 2.295185 kHz L4 = 0.492743 F4 = 3.496861 kHz

(b)

L1 = 2.406654 F1 = 0.576670 kHz L2 = 0.274573 F2 = 2.298181 kHz
L3 = 0.309148 F3 = 3.555708 kHz L4 = 0.000000 F4 = 5.544800 kHz
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(c)

L1 = 2.191803 F1 = 0.605000 kHz L2 = 0.265227 F2 = 2.478196 kHz
L3 = 0.544154 F3 = 3.649057 kHz L4 = -0.551388 F4 = 4.561376 kHz

(d)

L1 = 2.202443 F1 = 0.608633 kHz L2 = 0.071304 F2 = 2.321937 kHz
L3 = 0.662271 F3 = 3.473420 kHz
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(e)

L1 = 2.217035 F1 = 0.551158 kHz L2 = -0.003053 F2 = 2.303142 kHz
L3 = 0.137483 F3 = 3.459164 kHz L4 = -0.216584 F4 = 5.095179 kHz

(f)

L1 = 1.430661 F1 = 0.578986 kHz L2 = -0.619051 F2 = 2.426605 kHz
L3 = 0.792556 F3 = 3.525269 kHz L4 = -0.522849 F4 = 4.559778 kHz
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(g)

L1 = 0.326151 F1 = 0.549942 kHz L2 = 0.000379 F2 = 1.401725 kHz
L3 = 0.353586 F3 = 2.194561 kHz L4 = 0.151260 F4 = 3.197909 kHz

(h)

L1 = 1.696113 F1 = 0.641047 kHz L2 = 0.631089 F2 = 1.806168 kHz
L3 = -0.119042 F3 = 3.639956 kHz L4 = -0.060941 F4 = 4.832399 kHz

FIG. 17. Graphical presentation of cepstrally smoothed spectra for disordered speech

– Polish vowel “a” (vowel repetition case). Formant levels in [dB] and frequencies in

[kHz] are listed
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(a) first repetition; (b) second repetition; (c) third repetition; (d) fourth repetition;

(e) fifth repetition; (f) sixth repetition; (g) seventh repetition; (e) electronically

corrected vowel “a” (with DAF method).
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