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In this paper, application of computer modeling methods to the process of hearing 

aid fitting is described. A computer model of the acoustical system of a hearing aid is 

presented. Exemplary results of the experiments are presented and compared with 

measurement data. The model proved to behave similarly to the physical system. Further 

improvements to the model are discussed. 

 

 

1. Introduction 

 

 Computer modeling methods are commonly used when there is a need to examine 

properties of a given system before it is constructed. Computer simulations, however, were 

not applied so far to the process of fitting of acoustical elements of hearing aids. Currently, 

the fitting process is based on choosing the acoustical elements from a variety of 

configurations that differ in their acoustic properties. This is often a trial-and-error process, 

which is time-consuming and is tiresome for a patient. Therefore, using modeling methods in 

order to design a system having desired properties seems reasonable [5][6]. 

 A computer model is intended to examine acoustic properties of systems with various 

sets of parameters (dimensions, shape, materials, etc). Particularly, the computer model 

enables one matching its transfer function to the type of the hearing loss of a patient. Using 

the computer model, the user is able to compare results of simulations performed for various 



 

sets of parameters of the model and choose the most suitable one to create the acoustical 

system of a hearing aid, well-matched to the patient’s needs. 

 In this paper, the main part of the computer model of the acoustical system of a hearing 

aid is presented. The proposed model simulates the acoustical system as a set of cylindrical 

sections of different sizes (the waveguide). Experiments were performed in order to examine 

the influence of changing parameters of the model on its transfer function. The exemplary 

results of these experiments are included in this paper. The simulation results were compared 

with the measurements results of the real acoustical elements of a hearing aid. Finally, some 

improvements of the model are discussed which may augment its accuracy and effectiveness  

 

2. Computer  Model  of  Acoustical  Elements  of  a  Hearing  Aid 

 

 The task of the acoustical system of a hearing aid is to transmit sound waves produced 

by the receiver of the hearing aid to the ear canal of the user of the apparatus [2]. In the 

Behind-The-Ear (BTE) hearing aid type, this system comprises three main elements (Fig. 1). 

An earhook, made of hard plastic, protects acoustical converters of the hearing aid. A tubing is 

a long and narrow elastic tube which connects earhook to the earmold. An earmold is the most 

important and most complicated part of the system. Many earmold types are available, 

differing in their shape and material they are made of, as well as in shape and dimensions of 

the canal through which sound waves are transmitted to the ear [4][5]. In the miniaturized 

types of hearing aids (In-The-Canal types), the acoustical system is reduced to the small 

earmold. 

 Several attempts to model the acoustical system of a hearing aid were done by various 

researchers in the past. Most of them were based on the analogies between acoustical and 

electrical systems. These models are complicated and computing the transfer function of such 

models is time-consuming and requires a great amount of computer resources. Moreover, it is 

difficult to change the model parameters, such as dimensions or size of the system. Therefore, 

a different approach is proposed in this paper. It is based on the physical modeling methods. 

 Physical modeling has been successfully implemented to model acoustical systems such 

as the human vocal tract [6] or the organ pipe [1]. The acoustical system of a hearing aid is 

similar to the above-mentioned systems. The system can be represented as a set of cylindrical 

sections that differ in diameter and length. The model composed of cylindrical tubes is called 

the waveguide model [9]. This model is valid as long as the propagation of sound waves in 



 

the system is described by the one-dimensional wave equation. In other words, no transversal 

modes in the waveguide exist. This is true only for frequencies below the critical value given 

by [9]: 
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where c is the velocity of sound (c = 343 m/s) and a is the radius of the waveguide. Since the 

frequency band in hearing aids is limited, one can assume that fc is equal to 11.025 kHz, thus 

based on Eq. 1 the radius a must not exceed 9.111 mm. This condition is fulfilled in the 

acoustical system of the hearing aid, hence physical modeling methods may be used. 

 The physical (waveguide) model of the acoustical system can be based on the 

Markel-Gray model, already applied to modeling of the vocal tract [6]. This model was 

slightly modified in order to remove the arbitrary limit on the length of each cylindrical 

section [7][8]. This does not affect the efficiency of the model as long as its transfer function 

is computed mathematically (off-line mode). The model may be also implemented to work in 

real-time. However, digital interpolators are required in order to obtain fractional delays [9]. 

 The general block diagram of the waveguide model is presented in Fig. 2. Propagation 

of sound waves through the cylindrical sections is simulated using the delay lines d. Length of 

the delay line depends on the length of the tube, which is given by the expression: 
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where L is the length of the cylindrical segment in meters, c is the velocity of sound, fS is the 

sampling frequency. The value of d in the model described in this paper is not an integer in 

most of the cases. 

 Since each two adjacent cylindrical segments differ in diameter, there is a discontinuity 

in the acoustic impedances at the point of connection. Therefore, the partial reflection of the 

sound waves occurs. This phenomenon is described in terms of reflection coefficients [4][7]: 
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In the formula presented above, Si is: 
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and ai is the radius of the i-th cylindrical segment. 

 The most difficult problem to solve in modeling process is the simulation of the 

interaction between the waveguide and the outer media. In the model of the acoustical system 

of a hearing aid this means the interaction between the earhook and the receiver, as well as 

between the earmold and the ear canal and tympanic membrane. The modeling of these 

interactions can be done by setting the values of the input and output reflection coefficients, 

shown in Fig. 2 as r0 and rN respectively. Generally, these coefficients model the energy losses 

of the sound waves leaving the waveguide. Values of these coefficients depend on the 

diameter of the waveguide at its terminations, the density of air inside the waveguide and the 

acoustic impedance of the outer medium. However, input and output reflection coefficients 

may incorporate other energy losses in the model, resulting from physical phenomena such as 

viscous friction between the air and the walls of the waveguide, heat conduction through the 

walls or vibration of the walls [6]. Thus, the proper modeling of all these energy losses 

becomes a complicated matter. Furthermore, since most of these phenomena are frequency-

dependent, constant input and output coefficients have to be replaced by digital filters. 

 In order to examine acoustical properties of the model, its transfer function has to be 

calculated and plotted. This can be achieved using a method similar to the one applied by 

Rabiner and Shaffer to the original Markel–Gray model [6]. The transfer function of the 

model shown in Fig. 2 has the following form: 
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where N is the number of cylindrical sections, di is the length of the i–th delay line (i = 1...N), 

ri is the reflection coefficient (i = 1...N–1), r0 ≡ Fin(z), rN ≡ Fout(z). Eq. 5 shows that the 

waveguide model can be treated as the N–th order digital filter, having only poles. 

 



 

3. Experiments 

 

 A simple computer model of the acoustical system of the hearing aid, described in the 

previous section, was used in experiments. The earhook and the tubing were both modeled as  

single cylindrical tubes. The earmold canal was modeled as a number of cylindrical sections, 

depending on the modeled configuration. Due to the complicated nature of physical 

phenomena resulting in energy losses, they were not directly implemented at this stage of the 

research. The constant value r0 = 0.3 was chosen in order to obtain smooth shape of the 

transfer function curve. First-order lowpass IIR filter was used as the output reflection 

filter rN: 
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Coefficients of this filter: a = 0.226, b = –0.547, were chosen experimentally so that frequency 

bandwidth of the transfer function of the model matches the one of a real acoustic system. 

 All experiments were performed using the Mathematica computer system running on 

a typical personal computer. The transfer function of the model, given by Eq. 5, was 

computed and plotted, after substituting exp(j2πf / fS) for z, where fS is the sampling 

frequency. Since the frequency range of most hearing aids does not exceed 11 kHz due to the 

limitations of the acoustical converters, the sampling frequency of 22.05 kHz was chosen as 

sufficient. 

 The transfer function of the model was plotted for various values of its parameters and 

the obtained results were compared. The length and the diameter of the earmold canal sections 

and the tubing were changed, as well as the number of sections comprising the earmold canal. 

The size of the earhook was not changed, its length was equal to 17 mm, its diameter – 1.8 

mm. Dimensions of all elements of the system were adopted from real acoustical elements of 

a hearing aid [3][5]. Exemplary simulation results in a form of logarithmic plots of the 

transfer function magnitude versus frequency are included in this section (Figures 3 to 9). As 

seen from plots obtained from computer simulations, the main feature of plots is the presence 

of  evident maxima (peaks). The frequency of the first, main peak is about 1 kHz. The 

frequency components above 1 kHz are attenuated due to the energy losses modeled by the 

filter rN.  



 

 Experiments were performed in order to examine how the change of one of the model 

parameters, eg. size of one of its sections, affects the transfer function of the model. The 

obtained results of the simulations were not only compared with each other, but also with the 

results of measurements of the real acoustical elements of a hearing aid. These measurements 

were not performed by the authors, but they have been obtained from the manufacturers' data 

of modeled elements [3][4]. Due to comparison with the measurement results the authors 

were able to examine whether the computer model  changes  its parameters analogically as the 

real acoustical system does. The results are summarized below. 

 Fig. 3 illustrates the effect of increasing the length of the earmold canal from 10 mm to 

20 mm. The size of the tubing was not changed, its length was equal to 45.8 mm and its 

diameter to 2 mm. In the performed simulations, the peaks are shifted towards lower 

frequencies and the height of the main peak is slightly increased (Fig. 3b). Similar effect can 

be noticed in the measurement plot [3], a decrease of the high frequencies, however, is more 

noticeable. The effect of shortening the canal to 2 mm causes opposite results (Fig. 4). In both 

measurement and simulation plots the peaks are shifted right on the frequency axis. 

 In another experiment, the diameter of the earmold canal was changed. The length of 

the canal was equal to 10 mm, the size of the tubing was the same as in the previous 

experiment. In simulations, decreasing the diameter of the canal from 2.4 mm to 1.1 mm (Fig. 

5b) attenuates higher frequencies significantly and decreases the resonant frequencies. If the 

diameter is increased to 3 mm (Fig. 6b), the peaks are shifted to higher frequencies and 

amplitude of the transfer function in the high frequency range increases. These results are also 

consistent with measurement plots (Fig. 5a and 6a). 

 Results of another experiment, in which the size of the tubing was changed, are also in 

accordance with measurements of real acoustic elements. In theory, increasing the length of 

the tubing causes shifting the peaks towards lower frequencies, while  decreasing the tubing 

length has the opposite effect [4]. Similar relationships were found during simulations. 

Shortening the tubing from 45.8 mm to 40 mm increases the resonant frequencies (Fig. 7a)  

while shortening the tubing to 50 mm decreases them (Fig. 7b). The diameter of the tubing 

was equal to 2 mm and was not changed.  

 In the next experiment, diameter of the tubing was changed. According to measurement 

results [4], increasing the diameter of the tubing shifts peaks to higher frequencies and the 

amplitude of the main peak increases. Decreasing the tubing diameter does the opposite. 

These effects are also evident in the plots obtained from computer simulations. If the length of 



 

the tubing is constant (equal to 45.8 mm) and its diameter is increased to 2.5 mm (Fig. 8a), the 

frequencies of the peaks increase and the height of the main peak rises. The opposite effect – 

lowering the height of the main peak and shifting the peaks to lower frequencies – was 

obtained by reducing the diameter of the tubing to 1.5 mm (Fig. 8b). 

 The examples presented above show that it is not possible to obtain significant 

amplification of higher frequencies by changing the length and diameter of tubing and 

earmold canal. Therefore, special modifications have to be introduced to the acoustic system. 

The most commonly used solution is implementation of the “horn effect” – using the canal of 

the increasing diameter, which results in amplification of the higher frequencies (as an 

example a Libby horn earmold can serve) [3][5]. In order to implement this effect in the 

model, the earmold canal was divided into two or three cylindrical sections of different 

diameter (Fig. 9). Results of the simulation show that when the diameter of each consecutive 

cylindrical segment increases, the main peak is shifted towards higher frequencies and the 

frequency band above 1 kHz is significantly amplified (Fig. 9a). This effect is more 

significant if three such segments are used (Fig. 9b). In addition, the reverse horn effect can 

be used if the attenuation of higher frequencies is needed (Fig. 9c) The length and diameter of 

the tubing and hook, as well as filter coefficients, were the same as in previous examples. 

 

4. Conclusions 

 

 The computer model of the acoustical system of a hearing aid was presented in this 

paper. This model was used in experiments in which its transfer function was computed and 

then plotted. The results of the experiments are generally consistent with the results of 

measurements obtained by the manufacturers of the acoustic elements. Changing the model 

parameters has similar influence on its transfer function as changing the corresponding 

parameters of the acoustical system. Additionally, changing the shape of the earmold canal in 

a proper way enables one to amplify or attenuate high frequency components. Therefore, it 

may be concluded that the computer model proposed and described in this paper properly 

simulates the acoustical system of a hearing aid. The major differences concern the magnitude 

values on the transfer function plot. Therefore, a normalization in experiments is required in 

order to obtain the magnitude values in the decibel scale the same as in measurements.  

 It should be, however, noted that the model described in this paper was simplified. In 

order to achieve greater accuracy of the model, some improvements should be introduced. 



 

The most important problem is developing the method of simulating energy losses in the 

model. Moreover, the most important modifications used in real acoustical system of a 

hearing aid, such as venting canals and dampers, should be implemented in the model. These 

problems will be the subject of the next stage of research.  

 The results of experiments presented in this paper are promising. When the above-

mentioned features are incorporated into the model, it will become the basis of the computer 

system which might be useful in the process of fitting of the hearing aid. Based on the 

computer simulations, one will be able to compare the acoustical properties of different 

waveguide systems, change the model parameters until proper transfer function is obtained 

and then use the simulation results to create the acoustical system of a hearing aid well-fitted 

to the user’s needs. Such a system is not intended to replace the physicians, but to optimize 

their work by providing the fast and efficient method of designing acoustical elements of a 

hearing aid. 
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Figure captions 

 

Fig. 1. The main parts of BTE hearing aid: (a) overview, (b) earmold [5] 

 

Fig. 2. General model of the acoustical system of the hearing aid; r denotes reflection 

coefficient, d – delay line length 

 

Fig. 3. Increasing the length l of the earmold – plots of transfer function: (a) measurements of 

the real earmold [3]:  l = 10 mm (dashed line) and l = 20 mm (solid line); (b) computer 

simulations: l = 10 mm (thin line) and l = 20 mm (thick line) 

 

Fig. 4. Decreasing the length l of the earmold – plots of transfer function: (a) measurements of 

the real earmold [3]: l = 10 mm (dashed line) and l = 2 mm (solid line); (b) computer 

simulations: l = 10 mm (thin line) and l = 2 mm (thick line) 

 

Fig. 5. Decreasing the diameter d of the earmold – plots of transfer function: (a) 

measurements of the real earmold [3]: d = 2.4 mm (dashed line) and d = 1.1 mm (solid line); 

(b) computer simulations: d = 2.4 mm (thin line) and d = 1.1 mm (thick line) 

 

Fig. 6. Increasing the diameter d of the earmold – plots of transfer function: (a) measurements 

of the real earmold [3]: d = 2.4 mm (dashed line) and d = 4 mm (solid line); (b) computer 

simulations: d = 2.4 mm (thin line) and d = 4 mm (thick line) 

 

Fig. 7. Influence of changing the length l of the tubing on plots of transfer function in 

simulations: (a) l = 45.8 mm (thin line) and l = 40 mm (thick line); (b) l = 45.8 mm (thin line) 

and l = 55 mm (thick line) 

 



 

Fig. 8. Influence of changing the diameter d of the tubing on plots of transfer function in 

simulations: (a) d = 2 mm (thin line) and d = 2.5 mm (thick line); (b) d = 2 mm (thin line) and 

d = 2.5 mm (thick line) 

 

Fig. 9. Plots of transfer function of the computer model for varying shape and dimensions of 

the earmold canal; thin line: cylindrical canal of length l = 10 mm, diameter d  = 2.4 mm;  

thick line: (a) l1 = l2 = 5 mm, d1 = 2.4 mm, d2 = 4 mm,  

(b) l1 = l2 = 3 mm, l3 = 4 mm, d1 = 2.4 mm, di = 3.5 mm, di = 5 mm,  

(c) l1 = l2 = 3 mm, l3 = 4 mm, d1 = 5 mm, d2 = 3.5 mm, d2 = 2.4 mm 
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Fig. 1. The main parts of BTE hearing aid: (a) overview, (b) earmold [5] 
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Fig. 2. General model of the acoustical system of the hearing aid; r denotes reflection coefficient, d – 

delay line length 
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Fig. 3. Increasing the length l of the earmold – plots of transfer function: 

(a) measurements of the real earmold [3]: l = 10 mm (dashed line) and l = 20 mm (solid line) 
(b) computer simulations: l = 10 mm (thin line) and l = 20 mm (thick line) 
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Fig. 4. Decreasing the length l of the earmold – plots of transfer function: 

(a) measurements of the real earmold [3]: l = 10 mm (dashed line) and l = 2 mm (solid line) 
(b) computer simulations: l = 10 mm (thin line) and l = 2 mm (thick line) 
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Fig. 5. Decreasing the diameter d of the earmold – plots of transfer function: 

(a) measurements of the real earmold [3]: d = 2.4 mm (dashed line) and d = 1.1 mm (solid line) 
(b) computer simulations: d = 2.4 mm (thin line) and d = 1.1 mm (thick line) 
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Fig. 6. Increasing the diameter d of the earmold – plots of transfer function: 

(a) measurements of the real earmold [3]: d = 2.4 mm (dashed line) and d = 4 mm (solid line) 
(b) computer simulations: d = 2.4 mm (thin line) and d = 4 mm (thick line) 
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Fig. 7. Influence of changing the length l of the tubing on plots of transfer function in simulations:  

(a) l = 45.8 mm (thin line) and l = 40 mm (thick line), 
(b) l = 45.8 mm (thin line) and l = 55 mm (thick line) 
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Fig. 8. Influence of changing the diameter d of the tubing on plots of transfer function in simulations:  

(a) d = 2 mm (thin line) and d = 2.5 mm (thick line), 
(b) d = 2 mm (thin line) and d = 2.5 mm (thick line) 
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Fig. 9. Plots of transfer function of the computer model for varying shape and dimensions of the 

earmold canal; thin line: cylindrical canal of length l = 10 mm, diameter d  = 2.4 mm;  
thick line: (a) l1 = l2 = 5 mm, d1 = 2.4 mm, d2 = 4 mm,  

(b) l1 = l2 = 3 mm, l3 = 4 mm, d1 = 2.4 mm, di = 3.5 mm, di = 5 mm,  
(c) l1 = l2 = 3 mm, l3 = 4 mm, d1 = 5 mm, d2 = 3.5 mm, d2 = 2.4 mm 
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